54,099 research outputs found

    Zero-Shot Learning for Semantic Utterance Classification

    Get PDF
    We propose a novel zero-shot learning method for semantic utterance classification (SUC). It learns a classifier f:X→Yf: X \to Y for problems where none of the semantic categories YY are present in the training set. The framework uncovers the link between categories and utterances using a semantic space. We show that this semantic space can be learned by deep neural networks trained on large amounts of search engine query log data. More precisely, we propose a novel method that can learn discriminative semantic features without supervision. It uses the zero-shot learning framework to guide the learning of the semantic features. We demonstrate the effectiveness of the zero-shot semantic learning algorithm on the SUC dataset collected by (Tur, 2012). Furthermore, we achieve state-of-the-art results by combining the semantic features with a supervised method

    A Game-theoretic Machine Learning Approach for Revenue Maximization in Sponsored Search

    Full text link
    Sponsored search is an important monetization channel for search engines, in which an auction mechanism is used to select the ads shown to users and determine the prices charged from advertisers. There have been several pieces of work in the literature that investigate how to design an auction mechanism in order to optimize the revenue of the search engine. However, due to some unrealistic assumptions used, the practical values of these studies are not very clear. In this paper, we propose a novel \emph{game-theoretic machine learning} approach, which naturally combines machine learning and game theory, and learns the auction mechanism using a bilevel optimization framework. In particular, we first learn a Markov model from historical data to describe how advertisers change their bids in response to an auction mechanism, and then for any given auction mechanism, we use the learnt model to predict its corresponding future bid sequences. Next we learn the auction mechanism through empirical revenue maximization on the predicted bid sequences. We show that the empirical revenue will converge when the prediction period approaches infinity, and a Genetic Programming algorithm can effectively optimize this empirical revenue. Our experiments indicate that the proposed approach is able to produce a much more effective auction mechanism than several baselines.Comment: Twenty-third International Conference on Artificial Intelligence (IJCAI 2013

    Learning to infer: RL-based search for DNN primitive selection on Heterogeneous Embedded Systems

    Full text link
    Deep Learning is increasingly being adopted by industry for computer vision applications running on embedded devices. While Convolutional Neural Networks' accuracy has achieved a mature and remarkable state, inference latency and throughput are a major concern especially when targeting low-cost and low-power embedded platforms. CNNs' inference latency may become a bottleneck for Deep Learning adoption by industry, as it is a crucial specification for many real-time processes. Furthermore, deployment of CNNs across heterogeneous platforms presents major compatibility issues due to vendor-specific technology and acceleration libraries. In this work, we present QS-DNN, a fully automatic search based on Reinforcement Learning which, combined with an inference engine optimizer, efficiently explores through the design space and empirically finds the optimal combinations of libraries and primitives to speed up the inference of CNNs on heterogeneous embedded devices. We show that, an optimized combination can achieve 45x speedup in inference latency on CPU compared to a dependency-free baseline and 2x on average on GPGPU compared to the best vendor library. Further, we demonstrate that, the quality of results and time "to-solution" is much better than with Random Search and achieves up to 15x better results for a short-time search
    • …
    corecore