4 research outputs found

    Standart-konformes Snapshotting für SystemC Virtuelle Plattformen

    Get PDF
    The steady increase in complexity of high-end embedded systems goes along with an increasingly complex design process. We are currently still in a transition phase from Hardware-Description Language (HDL) based design towards virtual-platform-based design of embedded systems. As design complexity rises faster than developer productivity a gap forms. Restoring productivity while at the same time managing increased design complexity can also be achieved through focussing on the development of new tools and design methodologies. In most application areas, high-level modelling languages such as SystemC are used in early design phases. In modern software development Continuous Integration (CI) is used to automatically test if a submitted piece of code breaks functionality. Application of the CI concept to embedded system design and testing requires fast build and test execution times from the virtual platform framework. For this use case the ability to save a specific state of a virtual platform becomes necessary. The saving and restoring of specific states of a simulation requires the ability to serialize all data structures within the simulation models. Improving the frameworks and establishing better methods will only help to narrow the design gap, if these changes are introduced with the needs of the engineers and developers in mind. Ultimately, it is their productivity that shall be improved. The ability to save the state of a virtual platform enables developers to run longer test campaigns that can even contain randomized test stimuli. If the saved states are modifiable the developers can inject faulty states into the simulation models. This work contributes an extension to the SoCRocket virtual platform framework to enable snapshotting. The snapshotting extension can be considered a reference implementation as the utilization of current SystemC/TLM standards makes it compatible to other frameworkds. Furthermore, integrating the UVM SystemC library into the framework enables test driven development and fast validation of SystemC/TLM models using snapshots. These extensions narrow the design gap by supporting designers, testers and developers to work more efficiently.Die stetige Steigerung der Komplexität eingebetteter Systeme geht einher mit einer ebenso steigenden Komplexität des Entwurfsprozesses. Wir befinden uns momentan in der Übergangsphase vom Entwurf von eingebetteten Systemen basierend auf Hardware-Beschreibungssprachen hin zum Entwurf ebendieser basierend auf virtuellen Plattformen. Da die Entwurfskomplexität rasanter steigt als die Produktivität der Entwickler, entsteht eine Kluft. Die Produktivität wiederherzustellen und gleichzeitig die gesteigerte Entwurfskomplexität zu bewältigen, kann auch erreicht werden, indem der Fokus auf die Entwicklung neuer Werkzeuge und Entwurfsmethoden gelegt wird. In den meisten Anwendungsgebieten werden Modellierungssprachen auf hoher Ebene, wie zum Beispiel SystemC, in den frühen Entwurfsphasen benutzt. In der modernen Software-Entwicklung wird Continuous Integration (CI) benutzt um automatisiert zu überprüfen, ob eine eingespielte Änderung am Quelltext bestehende Funktionalitäten beeinträchtigt. Die Anwendung des CI-Konzepts auf den Entwurf und das Testen von eingebetteten Systemen fordert schnelle Bau- und Test-Ausführungszeiten von dem genutzten Framework für virtuelle Plattformen. Für diesen Anwendungsfall wird auch die Fähigkeit, einen bestimmten Zustand der virtuellen Plattform zu speichern, erforderlich. Das Speichern und Wiederherstellen der Zustände einer Simulation erfordert die Serialisierung aller Datenstrukturen, die sich in den Simulationsmodellen befinden. Das Verbessern von Frameworks und Etablieren besserer Methodiken hilft nur die Entwurfs-Kluft zu verringern, wenn diese Änderungen mit Berücksichtigung der Bedürfnisse der Entwickler und Ingenieure eingeführt werden. Letztendlich ist es ihre Produktivität, die gesteigert werden soll. Die Fähigkeit den Zustand einer virtuellen Plattform zu speichern, ermöglicht es den Entwicklern, längere Testkampagnen laufen zu lassen, die auch zufällig erzeugte Teststimuli beinhalten können oder, falls die gespeicherten Zustände modifizierbar sind, fehlerbehaftete Zustände in die Simulationsmodelle zu injizieren. Mein mit dieser Arbeit geleisteter Beitrag beinhaltet die Erweiterung des SoCRocket Frameworks um Checkpointing Funktionalität im Sinne einer Referenzimplementierung. Weiterhin ermöglicht die Integration der UVM SystemC Bibliothek in das Framework die Umsetzung der testgetriebenen Entwicklung und schnelle Validierung von SystemC/TLM Modellen mit Hilfe von Snapshots

    Optimierung der Energie und Power getriebenen Architekturexploration für Multicore und heterogenes System on Chip

    Get PDF
    The contribution of this work builds on top of the established virtual prototype platforms to improve both SoC design quality and productivity. Initially, an automatic system-level power estimation framework was developed to address the critical issue of early power estimation in SoC design. The estimation framework models the static and dynamic power consumption of the hardware components. These models are created from the normalized values of the basic design components of SoC, obtained through one-time power simulation of RTL hardware models. The framework allows dynamic technology node reconfiguration for power estimation models. Its instantaneous power reporting aids the detection of possible hotspot early into the design process. Adding this additional data in conjunction with a steadily growing design space of complex heterogeneous SoC, finding the right parameter configuration is a challenging and laborious task for a system-level designer. This work addresses this bottleneck by optimizing the design space exploration (DSE) process for MPSoC design. An automatic DSE framework for virtual platforms (VPs) was developed which is flexible and allows the selection optimal parameter configuration without pre-existing knowledge. To reduce exploration time, the framework is equipped with several multi-objective optimization techniques based on simulated annealing and a genetic algorithm. Lastly, to aid HW/SW partitioning at system-level, a flexible and automated workflow (SW2TLM) is presented. It allows the designer to explore various possible partitioning scenarios without going into depth of the hardware architecture complexity and software integration. The framework generates system-level hardware accelerators from corresponding functionality encoded in the software code and integrates them into the VP. Power consumption and time speedups of acceleration is reported to the designer, which further increases the quality and productivity of the development process towards the final architecture. The presented tools are evaluated using a state-of-the-art VP for a range of single and multi-core applications. Viewing the energy delay product, a reduction in exploration time was recorded at approximately 62% (worst case), maintaining optimal parameter accuracy of 90% compared to previous techniques. While the SW2TLM further increases the exploration versatility by combining modern high-level synthesis with system-level architectural exploration.Der Beitrag dieser Arbeit baut auf dem etablierten Konzept der virtuellen Prototyp (VP) Plattformen auf, um die Qualität und die Produktivität des Entwurfsprozesses zu verbessern. Zunächst wurde ein automatisches System-Level-Framework entwickelt, um Verlustleistungsabschätzung für SoC-Designs in einer deutlich früheren Entwicklungsphase zu ermöglichen. Hierfür werden statischen und dynamischen Energieverbrauchsanteile individueller Hardwareelemente durch ein abstraktes Modell ausgedrückt. Das Framework ermöglicht eine dynamische Anpassung des Technologieknotens sowie die Integration neuer Leistungsmodelle für Drittanbieterkomponenten. Die kontinuierliche Erfassung der Energieverbrauchseigenschaften und ihre grafische Darstellung Benutzeroberfläche unterstützt zusätzlich die frühzeitige Identifikation möglicher Hotspots. Durch die Bereitstellung zusätzlicher Daten, in Verbindung mit einem stetig wachsenden Entwurfsraum komplexer SoCs, ist die Identifikation der richtigen Parameterkonfiguration eine zeitintensive Aufgabe. Die vorgelegten Konzepte erlauben eine gesteigerte Automatisierung des Explorationsprozesses. Techniken der mehrdimensionalen Optimierung, basierend auf Simulated Annealing und genetischer Algorithmen erlauben die Identifikation von geeigneten Konfigurationen ohne vorheriges Wissen oder Erfahrungswerte Schließlich wurde zur Unterstützung der HW/SW -Partitionierung auf System-Ebene ein flexibler und automatisierter Workflow entwickelt. Er ermöglicht es dem Designer verschiedene mögliche Partitionierungsszenarien zu untersuchen, ohne sich in die Komplexität der Hardwarearchitektur und der Softwareintegration zu vertiefen. Das Framework erzeugt abstrakte Beschleunigermodelle aus entsprechenden Softwarefunktionen und integriert sie nahtlos in den ausführbare VP. Detaillierte Daten zum Energieverbrauch, Beschleunigungsfaktor und Kommunikationsoverhead der Partitionierung werden erfasst und dem Designer zur Verfügung gestellt, was die Qualität und Produktivität des weiter erhöht. Die vorgestellten Tools werden mit einer modernen VP für verschiedene SW-Anwendungen evaluiert. Bei Betrachtung des Energieverzögerungsprodukts wurde eine Verringerung der Explorationszeit um mehr als 62% bei 90% Parametergenauigkeit festgestell. Darauf aufbauend, erleichtert die automatisierte Untersuchung verschiedener HW/SW Partitionierungen die Entwicklung heterogener Architekturen durch die Kombination moderner HLS mit Architektur-Exploration auf der Systemebene

    Three-Dimensional Processing-In-Memory-Architectures: A Holistic Tool For Modeling And Simulation

    Get PDF
    Die gemeinhin als Memory Wall bekannte, sich stetig weitende Leistungslücke zwischen Prozessor- und Speicherarchitekturen erfordert neue Konzepte, um weiterhin eine Skalierung der Rechenleistung zu ermöglichen. Da Speicher als die Beschränkung innerhalb einer Von-Neumann-Architektur identifiziert wurden, widmet sich die Arbeit dieser Problemstellung. Obgleich dreidimensionale Speicher zu einer Linderung der Memory Wall beitragen können, sind diese alleinig für die zukünftige Skalierung ungenügend. Aufgrund höherer Effizienzen stellt die Integration von Rechenkapazität in den Speicher (Processing-In-Memory, PIM) ein vielversprechender Ausweg dar, jedoch existiert ein Mangel an PIM-Simulationsmodellen. Daher wurde ein flexibles Simulationswerkzeug für dreidimensionale Speicherstapel geschaffen, welches zur Modellierung von dreidimensionalen PIM erweitert wurde. Dieses kann Speicherstapel wie etwa Hybrid Memory Cube standardkonform simulieren und bietet zugleich eine hohe Genauigkeit indem auf elementaren Datenpaketen in Kombination mit dem Hardware validierten Simulator BOBSim modelliert wird. Ein eigens entworfener Simulationstaktbaum ermöglicht zugleich eine schnelle Ausführung. Messungen weisen im funktionalen Modus eine 100-fache Beschleunigung auf, wohingegen eine Verdoppelung der Ausführungsgeschwindigkeit mit Taktgenauigkeit erzielt wird. Anhand eines eigens implementierten, binärkompatiblen GPU-Beschleunigers wird die Modellierung einer vollständig dreidimensionalen PIM-Architektur demonstriert. Dabei orientieren sich die maximalen Hardwareressourcen an einem PIM-Beschleuniger aus der Literatur. Evaluiert wird einerseits das GPU-Simulationsmodell eigenständig, andererseits als PIM-Verbund jeweils mit Hilfe einer repräsentativ gewählten, speicherbeschränkten geophysikalischen Bildverarbeitung. Bei alleiniger Betrachtung des GPU-Simulationsmodells weist dieses eine signifikant gesteigerte Simulationsgeschwindigkeit auf, bei gleichzeitiger Abweichung von 6% gegenüber dem Verilator-Modell. Nachfolgend werden innerhalb dieser Arbeit unterschiedliche Konfigurationen des integrierten PIM-Beschleunigers evaluiert. Je nach gewählter Konfiguration kann der genutzte Algorithmus entweder bis zu 140GFLOPS an tatsächlicher Rechenleistung abrufen oder eine maximale Recheneffizienz von synthetisch 30% bzw. real 24,5% erzielen. Letzteres stellt eine Verdopplung des Stands der Technik dar. Eine anknüpfende Diskussion erläutert eingehend die Resultate.The steadily widening performance gap between processor- and memory-architectures - commonly known as the Memory Wall - requires novel concepts to achieve further scaling in processing performance. As memories were identified as the limitation within a Von-Neumann-architecture, this work addresses this constraining issue. Although three-dimensional memories alleviate the effects of the Memory Wall, the sole utilization of such memories would be insufficient. Due to higher efficiencies, the integration of processing capacity into memories (so-called Processing-In-Memory, PIM) depicts a promising alternative. However, a lack of PIM simulation models still remains. As a consequence, a flexible simulation tool for three-dimensional stacked memories was established, which was extended for modeling three-dimensional PIM architectures. This tool can simulate stacked memories such as Hybrid Memory Cube standard-compliant and simultaneously offers high accuracy by modeling on elementary data packets (FLIT) in combination with the hardware validated BOBSim simulator. To this, a specifically designed simulation clock tree enables an rapid simulation execution. A 100x speed up in simulation execution can be measured while utilizing the functional mode, whereas a 2x speed up is achieved during clock-cycle accuracy mode. With the aid of a specifically implemented, binary compatible GPU accelerator and the established tool, the modeling of a holistic three-dimensional PIM architecture is demonstrated within this work. Hardware resources used were constrained by a PIM architecture from literature. A representative, memory-bound, geophysical imaging algorithm was leveraged to evaluate the GPU model as well as the compound PIM simulation model. The sole GPU simulation model depicts a significantly improved simulation performance with a deviation of 6% compared to a Verilator model. Subsequently, various PIM accelerator configurations with the integrated GPU model were evaluated. Depending on the chosen PIM configuration, the utilized algorithm achieves 140GFLOPS of processing performance or a maximum computing efficiency of synthetically 30% or realistically 24.5%. The latter depicts a 2x improvement compared to state-of-the-art. A following discussion showcases the results in depth
    corecore