964,304 research outputs found

    A Science of Reasoning

    Get PDF
    This paper addresses the question of how we can understand reasoning in general and mathematical proofs in particular. It argues the need for a high-level understanding of proofs to complement the low-level understanding provided by Logic. It proposes a role for computation in providing this high-level understanding, namely by the association of proof plans with proofs. Proof plans are defined and examples are given for two families of proofs. Criteria are given for assessing the association of a proof plan with a proof. 1 Motivation: the understanding of mathematical proofs The understanding of reasoning has interested researchers since, at least, Aristotle. Logic has been proposed by Aristotle, Boole, Frege and others as a way of formalising arguments and understanding their structure. There have also been psychological studies of how people and animals actually do reason. The work on Logic has been especially influential in the automation of reasoning. For instance, resolution..

    Deconstructing climate misinformation to identify reasoning errors

    Get PDF
    Misinformation can have significant societal consequences. For example, misinformation about climate change has confused the public and stalled support for mitigation policies. When people lack the expertise and skill to evaluate the science behind a claim, they typically rely on heuristics such as substituting judgment about something complex (i.e. climate science) with judgment about something simple (i.e. the character of people who speak about climate science) and are therefore vulnerable to misleading information. Inoculation theory offers one approach to effectively neutralize the influence of misinformation. Typically, inoculations convey resistance by providing people with information that counters misinformation. In contrast, we propose inoculating against misinformation by explaining the fallacious reasoning within misleading denialist claims. We offer a strategy based on critical thinking methods to analyse and detect poor reasoning within denialist claims. This strategy includes detailing argument structure, determining the truth of the premises, and checking for validity, hidden premises, or ambiguous language. Focusing on argument structure also facilitates the identification of reasoning fallacies by locating them in the reasoning process. Because this reason-based form of inoculation is based on general critical thinking methods, it offers the distinct advantage of being accessible to those who lack expertise in climate science. We applied this approach to 42 common denialist claims and find that they all demonstrate fallacious reasoning and fail to refute the scientific consensus regarding anthropogenic global warming. This comprehensive deconstruction and refutation of the most common denialist claims about climate change is designed to act as a resource for communicators and educators who teach climate science and/or critical thinking

    Reasoning About Liquids via Closed-Loop Simulation

    Full text link
    Simulators are powerful tools for reasoning about a robot's interactions with its environment. However, when simulations diverge from reality, that reasoning becomes less useful. In this paper, we show how to close the loop between liquid simulation and real-time perception. We use observations of liquids to correct errors when tracking the liquid's state in a simulator. Our results show that closed-loop simulation is an effective way to prevent large divergence between the simulated and real liquid states. As a direct consequence of this, our method can enable reasoning about liquids that would otherwise be infeasible due to large divergences, such as reasoning about occluded liquid.Comment: Robotics: Science & Systems (RSS), July 12-16, 2017. Cambridge, MA, US

    New Water in Old Buckets: Hypothetical and Counterfactual Reasoning in Mach’s Economy of Science

    Get PDF
    Ernst Mach’s defense of relativist theories of motion in Die Mechanik involves a well-known criticism of Newton’s theory appealing to absolute space, and of Newton’s “bucket” experiment. Sympathetic readers (Norton 1995) and critics (Stein 1967, 1977) agree that there’s a tension in Mach’s view: he allows for some constructed scientific concepts, but not others, and some kinds of reasoning about unobserved phenomena, but not others. Following Banks (2003), I argue that this tension can be interpreted as a constructive one, springing from Mach’s approach to scientific reasoning. Mach’s “economy of science” allows for a principled distinction to be made, between natural and artificial hypothetical reasoning, and Mach defends a division of labor between the sciences in a 1903 paper for The Monist, “Space and Geometry from the Point of View of Physical Inquiry”. That division supports counterfactual reasoning in Mach’s system, something that’s long been denied is possible for him

    Fuzzy reasoning spiking neural P systems revisited: A formalization

    Get PDF
    Research interest within membrane computing is becoming increasingly interdisciplinary.In particular, one of the latest applications is fault diagnosis. The underlying mechanismwas conceived by bridging spiking neural P systems with fuzzy rule-based reasoning systems. Despite having a number of publications associated with it, this research line stilllacks a proper formalization of the foundations.National Natural Science Foundation of China No 61320106005National Natural Science Foundation of China No 6147232
    • 

    corecore