3,390 research outputs found

    Radio and X-ray Observations of the Type Ic SN 2007gr Reveal an Ordinary, Non-relativistic Explosion

    Full text link
    We present extensive radio and X-ray observations of the nearby Type Ic SN 2007gr in NGC 1058 obtained with the Very Large Array and the Chandra X-ray Observatory and spanning 5 to 150 days after explosion. Through our detailed modeling of these data, we estimate the properties of the blastwave and the circumstellar environment. We find evidence for a freely-expanding and non-relativistic explosion with an average blastwave velocity, v~0.2c, and a total internal energy for the radio emitting material of E ~ 2 x 10^46 erg assuming equipartition of energy between electrons and magnetic fields (epsilon_e=epsilon_B=0.1). The temporal and spectral evolution of the radio emission points to a stellar wind-blown environment shaped by a steady progenitor mass loss rate of Mdot ~ 6 x 10^-7 solar masses per year (wind velocity, v_w=10^3 km/s). These parameters are fully consistent with those inferred for other SNe Ibc and are in line with the expectations for an ordinary, homologous SN explosion. Our results are at odds with those of Paragi et al. (2010) who recently reported evidence for a relativistic blastwave in SN 2007gr based on their claim that the radio emission was resolved away in a low signal-to-noise Very Long Baseline Interferometry (VLBI) observation. Here we show that the exotic physical scenarios required to explain the claimed relativistic velocity -- extreme departures from equipartition and/or a highly collimated outflow -- are excluded by our detailed Very Large Array radio observations. Moreover, we present an independent analysis of the VLBI data and propose that a modest loss of phase coherence provides a more natural explanation for the apparent flux density loss which is evident on both short and long baselines. We conclude that SN 2007gr is an ordinary Type Ibc supernova.Comment: 14 pages, 6 figures, submitted to Ap

    Long-term monitoring of geodynamic surface deformation using SAR interferometry

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2014Synthetic Aperture Radar Interferometry (InSAR) is a powerful tool to measure surface deformation and is well suited for surveying active volcanoes using historical and existing satellites. However, the value and applicability of InSAR for geodynamic monitoring problems is limited by the influence of temporal decorrelation and electromagnetic path delay variations in the atmosphere, both of which reduce the sensitivity and accuracy of the technique. The aim of this PhD thesis research is: how to optimize the quantity and quality of deformation signals extracted from InSAR stacks that contain only a low number of images in order to facilitate volcano monitoring and the study of their geophysical signatures. In particular, the focus is on methods of mitigating atmospheric artifacts in interferograms by combining time-series InSAR techniques and external atmospheric delay maps derived by Numerical Weather Prediction (NWP) models. In the first chapter of the thesis, the potential of the NWP Weather Research & Forecasting (WRF) model for InSAR data correction has been studied extensively. Forecasted atmospheric delays derived from operational High Resolution Rapid Refresh for the Alaska region (HRRRAK) products have been compared to radiosonding measurements in the first chapter. The result suggests that the HRRR-AK operational products are a good data source for correcting atmospheric delays in spaceborne geodetic radar observations, if the geophysical signal to be observed is larger than 20 mm. In the second chapter, an advanced method for integrating NWP products into the time series InSAR workflow is developed. The efficiency of the algorithm is tested via simulated data experiments, which demonstrate the method outperforms other more conventional methods. In Chapter 3, a geophysical case study is performed by applying the developed algorithm to the active volcanoes of Unimak Island Alaska (Westdahl, Fisher and Shishaldin) for long term volcano deformation monitoring. The volcano source location at Westdahl is determined to be approx. 7 km below sea level and approx. 3.5 km north of the Westdahl peak. This study demonstrates that Fisher caldera has had continuous subsidence over more than 10 years and there is no evident deformation signal around Shishaldin peak.Chapter 1. Performance of the High Resolution Atmospheric Model HRRR-AK for Correcting Geodetic Observations from Spaceborne Radars -- Chapter 2. Robust atmospheric filtering of InSAR data based on numerical weather prediction models -- Chapter 3. Subtle motion long term monitoring of Unimak Island from 2003 to 2010 by advanced time series SAR interferometry -- Chapter 4. Conclusion and future work

    Improving InSAR geodesy using global atmospheric models

    Get PDF
    Spatial and temporal variations of pressure, temperature and water vapor content in the atmosphere introduce significant confounding delays in Interferometric Synthetic Aperture Radar (InSAR) observations of ground deformation and bias estimatesof regional strain rates. Producing robust estimates of tropospheric delays remains one of the key challenges in increasing the accuracy of ground deformation measurements using InSAR. Recent studies revealed the efficiency of global atmospheric reanalysis to mitigate the impact of tropospheric delays, motivating further exploration of their potential. Here, we explore the effectiveness of these models in several geographic and tectonic settings on both single interferograms and time series analysis products. Both hydrostatic and wet contributions to the phase delay are important to account for. We validate these path delay corrections by comparing with estimates of vertically integrated atmospheric water vapor content derived from the passive multi-spectral imager MERIS, onboard the ENVISAT satellite. Generally, the performance of the prediction depends on the vigor of atmospheric turbulence. We discuss (1) how separating atmospheric and orbital contributions allows one to better measure long wavelength deformation, (2) how atmospheric delays affect measurements of surface deformation following earthquakes and (3) we show that such a method allows us to reduce biases in multi-year strain rate estimates by reducing the influence of unevenly sampled seasonal oscillations of the tropospheric delay

    Ultrafast optical ranging using microresonator soliton frequency combs

    Get PDF
    Light detection and ranging (LIDAR) is critical to many fields in science and industry. Over the last decade, optical frequency combs were shown to offer unique advantages in optical ranging, in particular when it comes to fast distance acquisition with high accuracy. However, current comb-based concepts are not suited for emerging high-volume applications such as drone navigation or autonomous driving. These applications critically rely on LIDAR systems that are not only accurate and fast, but also compact, robust, and amenable to cost-efficient mass-production. Here we show that integrated dissipative Kerr-soliton (DKS) comb sources provide a route to chip-scale LIDAR systems that combine sub-wavelength accuracy and unprecedented acquisition speed with the opportunity to exploit advanced photonic integration concepts for wafer-scale mass production. In our experiments, we use a pair of free-running DKS combs, each providing more than 100 carriers for massively parallel synthetic-wavelength interferometry. We demonstrate dual-comb distance measurements with record-low Allan deviations down to 12 nm at averaging times of 14 μ\mus as well as ultrafast ranging at unprecedented measurement rates of up to 100 MHz. We prove the viability of our technique by sampling the naturally scattering surface of air-gun projectiles flying at 150 m/s (Mach 0.47). Combining integrated dual-comb LIDAR engines with chip-scale nanophotonic phased arrays, the approach could allow widespread use of compact ultrafast ranging systems in emerging mass applications.Comment: 9 pages, 3 figures, Supplementary information is attached in 'Ancillary files

    Matter-wave laser Interferometric Gravitation Antenna (MIGA): New perspectives for fundamental physics and geosciences

    Full text link
    The MIGA project aims at demonstrating precision measurements of gravity with cold atom sensors in a large scale instrument and at studying the associated applications in geosciences and fundamental physics. The first stage of the project (2013-2018) will consist in building a 300-meter long optical cavity to interrogate atom interferometers and will be based at the low noise underground laboratory LSBB in Rustrel, France. The second stage of the project (2018-2023) will be dedicated to science runs and data analyses in order to probe the spatio-temporal structure of the local gravity field of the LSBB region, a site of high hydrological interest. MIGA will also assess future potential applications of atom interferometry to gravitational wave detection in the frequency band 0.110\sim 0.1-10 Hz hardly covered by future long baseline optical interferometers. This paper presents the main objectives of the project, the status of the construction of the instrument and the motivation for the applications of MIGA in geosciences. Important results on new atom interferometry techniques developed at SYRTE in the context of MIGA and paving the way to precision gravity measurements are also reported.Comment: Proceedings of the 50th Rencontres de Moriond "100 years after GR", La Thuile (Italy), 21-28 March 2015 - 10 pages, 5 figures, 23 references version2: added references, corrected typo

    Ground Based SAR Interferometry: a Novel Tool for Geoscience

    Get PDF
    corecore