24,462 research outputs found

    Modeling views in the layered view model for XML using UML

    Get PDF
    In data engineering, view formalisms are used to provide flexibility to users and user applications by allowing them to extract and elaborate data from the stored data sources. Conversely, since the introduction of Extensible Markup Language (XML), it is fast emerging as the dominant standard for storing, describing, and interchanging data among various web and heterogeneous data sources. In combination with XML Schema, XML provides rich facilities for defining and constraining user-defined data semantics and properties, a feature that is unique to XML. In this context, it is interesting to investigate traditional database features, such as view models and view design techniques for XML. However, traditional view formalisms are strongly coupled to the data language and its syntax, thus it proves to be a difficult task to support views in the case of semi-structured data models. Therefore, in this paper we propose a Layered View Model (LVM) for XML with conceptual and schemata extensions. Here our work is three-fold; first we propose an approach to separate the implementation and conceptual aspects of the views that provides a clear separation of concerns, thus, allowing analysis and design of views to be separated from their implementation. Secondly, we define representations to express and construct these views at the conceptual level. Thirdly, we define a view transformation methodology for XML views in the LVM, which carries out automated transformation to a view schema and a view query expression in an appropriate query language. Also, to validate and apply the LVM concepts, methods and transformations developed, we propose a view-driven application development framework with the flexibility to develop web and database applications for XML, at varying levels of abstraction

    Data access and integration in the ISPIDER proteomics grid

    Get PDF
    Grid computing has great potential for supporting the integration of complex, fast changing biological data repositories to enable distributed data analysis. One scenario where Grid computing has such potential is provided by proteomics resources which are rapidly being developed with the emergence of affordable, reliable methods to study the proteome. The protein identifications arising from these methods derive from multiple repositories which need to be integrated to enable uniform access to them. A number of technologies exist which enable these resources to be accessed in a Grid environment, but the independent development of these resources means that significant data integration challenges, such as heterogeneity and schema evolution, have to be met. This paper presents an architecture which supports the combined use of Grid data access (OGSA-DAI), Grid distributed querying (OGSA-DQP) and data integration (AutoMed) software tools to support distributed data analysis. We discuss the application of this architecture for the integration of several autonomous proteomics data resources

    Ontology mapping: the state of the art

    No full text
    Ontology mapping is seen as a solution provider in today's landscape of ontology research. As the number of ontologies that are made publicly available and accessible on the Web increases steadily, so does the need for applications to use them. A single ontology is no longer enough to support the tasks envisaged by a distributed environment like the Semantic Web. Multiple ontologies need to be accessed from several applications. Mapping could provide a common layer from which several ontologies could be accessed and hence could exchange information in semantically sound manners. Developing such mapping has beeb the focus of a variety of works originating from diverse communities over a number of years. In this article we comprehensively review and present these works. We also provide insights on the pragmatics of ontology mapping and elaborate on a theoretical approach for defining ontology mapping

    Interface refactoring in performance-constrained web services

    Get PDF
    This paper presents the development of REF-WS an approach to enable a Web Service provider to reliably evolve their service through the application of refactoring transformations. REF-WS is intended to aid service providers, particularly in a reliability and performance constrained domain as it permits upgraded ’non-backwards compatible’ services to be deployed into a performance constrained network where existing consumers depend on an older version of the service interface. In order for this to be successful, the refactoring and message mediation needs to occur without affecting functional compatibility with the services’ consumers, and must operate within the performance overhead expected of the original service, introducing as little latency as possible. Furthermore, compared to a manually programmed solution, the presented approach enables the service developer to apply and parameterize refactorings with a level of confidence that they will not produce an invalid or ’corrupt’ transformation of messages. This is achieved through the use of preconditions for the defined refactorings

    A unified view of data-intensive flows in business intelligence systems : a survey

    Get PDF
    Data-intensive flows are central processes in today’s business intelligence (BI) systems, deploying different technologies to deliver data, from a multitude of data sources, in user-preferred and analysis-ready formats. To meet complex requirements of next generation BI systems, we often need an effective combination of the traditionally batched extract-transform-load (ETL) processes that populate a data warehouse (DW) from integrated data sources, and more real-time and operational data flows that integrate source data at runtime. Both academia and industry thus must have a clear understanding of the foundations of data-intensive flows and the challenges of moving towards next generation BI environments. In this paper we present a survey of today’s research on data-intensive flows and the related fundamental fields of database theory. The study is based on a proposed set of dimensions describing the important challenges of data-intensive flows in the next generation BI setting. As a result of this survey, we envision an architecture of a system for managing the lifecycle of data-intensive flows. The results further provide a comprehensive understanding of data-intensive flows, recognizing challenges that still are to be addressed, and how the current solutions can be applied for addressing these challenges.Peer ReviewedPostprint (author's final draft

    Linked education: interlinking educational resources and the web of data

    Get PDF
    Research on interoperability of technology-enhanced learning (TEL) repositories throughout the last decade has led to a fragmented landscape of competing approaches, such as metadata schemas and interface mechanisms. However, so far Web-scale integration of resources is not facilitated, mainly due to the lack of take-up of shared principles, datasets and schemas. On the other hand, the Linked Data approach has emerged as the de-facto standard for sharing data on the Web and offers a large potential to solve interoperability issues in the field of TEL. In this paper, we describe a general approach to exploit the wealth of already existing TEL data on the Web by allowing its exposure as Linked Data and by taking into account automated enrichment and interlinking techniques to provide rich and well-interlinked data for the educational domain. This approach has been implemented in the context of the mEducator project where data from a number of open TEL data repositories has been integrated, exposed and enriched by following Linked Data principles
    • 

    corecore