219 research outputs found

    Performance optimization and energy efficiency of big-data computing workflows

    Get PDF
    Next-generation e-science is producing colossal amounts of data, now frequently termed as Big Data, on the order of terabyte at present and petabyte or even exabyte in the predictable future. These scientific applications typically feature data-intensive workflows comprised of moldable parallel computing jobs, such as MapReduce, with intricate inter-job dependencies. The granularity of task partitioning in each moldable job of such big data workflows has a significant impact on workflow completion time, energy consumption, and financial cost if executed in clouds, which remains largely unexplored. This dissertation conducts an in-depth investigation into the properties of moldable jobs and provides an experiment-based validation of the performance model where the total workload of a moldable job increases along with the degree of parallelism. Furthermore, this dissertation conducts rigorous research on workflow execution dynamics in resource sharing environments and explores the interactions between workflow mapping and task scheduling on various computing platforms. A workflow optimization architecture is developed to seamlessly integrate three interrelated technical components, i.e., resource allocation, job mapping, and task scheduling. Cloud computing provides a cost-effective computing platform for big data workflows where moldable parallel computing models are widely applied to meet stringent performance requirements. Based on the moldable parallel computing performance model, a big-data workflow mapping model is constructed and a workflow mapping problem is formulated to minimize workflow makespan under a budget constraint in public clouds. This dissertation shows this problem to be strongly NP-complete and designs i) a fully polynomial-time approximation scheme for a special case with a pipeline-structured workflow executed on virtual machines of a single class, and ii) a heuristic for a generalized problem with an arbitrary directed acyclic graph-structured workflow executed on virtual machines of multiple classes. The performance superiority of the proposed solution is illustrated by extensive simulation-based results in Hadoop/YARN in comparison with existing workflow mapping models and algorithms. Considering that large-scale workflows for big data analytics have become a main consumer of energy in data centers, this dissertation also delves into the problem of static workflow mapping to minimize the dynamic energy consumption of a workflow request under a deadline constraint in Hadoop clusters, which is shown to be strongly NP-hard. A fully polynomial-time approximation scheme is designed for a special case with a pipeline-structured workflow on a homogeneous cluster and a heuristic is designed for the generalized problem with an arbitrary directed acyclic graph-structured workflow on a heterogeneous cluster. This problem is further extended to a dynamic version with deadline-constrained MapReduce workflows to minimize dynamic energy consumption in Hadoop clusters. This dissertation proposes a semi-dynamic online scheduling algorithm based on adaptive task partitioning to reduce dynamic energy consumption while meeting performance requirements from a global perspective, and also develops corresponding system modules for algorithm implementation in the Hadoop ecosystem. The performance superiority of the proposed solutions in terms of dynamic energy saving and deadline missing rate is illustrated by extensive simulation results in comparison with existing algorithms, and further validated through real-life workflow implementation and experiments using the Oozie workflow engine in Hadoop/YARN systems

    Performance Modeling and Resource Management for Mapreduce Applications

    Get PDF
    Big Data analytics is increasingly performed using the MapReduce paradigm and its open-source implementation Hadoop as a platform choice. Many applications associated with live business intelligence are written as complex data analysis programs defined by directed acyclic graphs of MapReduce jobs. An increasing number of these applications have additional requirements for completion time guarantees. The advent of cloud computing brings a competitive alternative solution for data analytic problems while it also introduces new challenges in provisioning clusters that provide best cost-performance trade-offs. In this dissertation, we aim to develop a performance evaluation framework that enables automatic resource management for MapReduce applications in achieving different optimization goals. It consists of the following components: (1) a performance modeling framework that estimates the completion time of a given MapReduce application when executed on a Hadoop cluster according to its input data sets, the job settings and the amount of allocated resources for processing it; (2) a resource allocation strategy for deadline-driven MapReduce applications that automatically tailors and controls the resource allocation on a shared Hadoop cluster to different applications to achieve their (soft) deadlines; (3) a simulator-based solution to the resource provision problem in public cloud environment that guides the users to determine the types and amount of resources that should lease from the service provider for achieving different goals; (4) an optimization strategy to automatically determine the optimal job settings within a MapReduce application for efficient execution and resource usage. We validate the accuracy, efficiency, and performance benefits of the proposed framework using a set of realistic MapReduce applications on both private cluster and public cloud environment

    D-SPACE4Cloud: A Design Tool for Big Data Applications

    Get PDF
    The last years have seen a steep rise in data generation worldwide, with the development and widespread adoption of several software projects targeting the Big Data paradigm. Many companies currently engage in Big Data analytics as part of their core business activities, nonetheless there are no tools and techniques to support the design of the underlying hardware configuration backing such systems. In particular, the focus in this report is set on Cloud deployed clusters, which represent a cost-effective alternative to on premises installations. We propose a novel tool implementing a battery of optimization and prediction techniques integrated so as to efficiently assess several alternative resource configurations, in order to determine the minimum cost cluster deployment satisfying QoS constraints. Further, the experimental campaign conducted on real systems shows the validity and relevance of the proposed method

    Allocating MapReduce workflows with deadlines to heterogeneous servers in a cloud data center

    Full text link
    [EN] Total profit is one of the most important factors to be considered from the perspective of resource providers. In this paper, an original MapReduce workflow scheduling with deadline and data locality is proposed to maximize total profit of resource providers. A new workflow conversion based on dynamic programming and ChainMap/ChainReduce is designed to decrease transmission times among MapReduce jobs of workflows. A new deadline division considering execution time, float time and job level is proposed to obtain better deadlines of MapReduce jobs in workflows. With the adapted replica strategy in MapReduce workflow, a new task scheduling is proposed to improve data locality which assigns tasks to servers with the earliest completion time in order to ensure resource providers obtain more profit. Experimental results show that the proposed heuristic results in larger total profit than other adopted algorithms.This work is supported by the National Key Research and Development Program of China (No. 2017YFB1400801), the National Natural Science Foundation of China (Nos. 61872077, 61832004) and Collaborative Innovation Center of Wireless Communications Technology. Rubén Ruiz is partly supported by the Spanish Ministry of Science, Innovation, and Universities, under the project ¿OPTEP-Port Terminal Operations Optimization¿ (No. RTI2018-094940-B-I00) financed with FEDER funds¿.Wang, J.; Li, X.; Ruiz García, R.; Xu, H.; Chu, D. (2020). Allocating MapReduce workflows with deadlines to heterogeneous servers in a cloud data center. Service Oriented Computing and Applications. 14(2):101-118. https://doi.org/10.1007/s11761-020-00290-1S101118142Zaharia M, Chowdhury M, Franklin M et al (2010) Spark: cluster computing with working sets. In: Usenix conference on hot topics in cloud computing, pp 1765–1773Li L, Ma Z, Liu L et al (2013) Hadoop-based ARIMA algorithm and its application in weather forecast. Int J Database Theory Appl 6(5):119–132Xun Y, Zhang J, Qin X (2017) FiDoop: parallel mining of frequent itemsets using MapReduce. IEEE Trans Syst Man Cybern Syst 46(3):313–325Wang Y, Shi W (2014) Budget-driven scheduling algorithms for batches of MapReduce jobs in heterogeneous clouds. IEEE Trans Cloud Comput 2(3):306–319Tiwari N, Sarkar S, Bellur U et al (2015) Classification framework of MapReduce scheduling algorithms. ACM Comput Surv 47(3):1–49Bu Y, Howe B, Balazinska M et al (2012) The HaLoop approach to large-scale iterative data analysis. VLDB J 21(2):169–190Gunarathne T, Zhang B, Wu T et al (2013) Scalable parallel computing on clouds using Twister4Azure iterative MapReduce. Future Gener Comput Syst 29(4):1035–1048Zhang Y, Gao Q, Gao L et al (2012) iMapReduce: a distributed computing framework for iterative computation. J Grid Comput 10(1):47–68Dong X, Wang Y, Liao H (2011) Scheduling mixed real-time and non-real-time applications in MapReduce environment. In: International conference on parallel and distributed systems, pp 9–16Tang Z, Zhou J, Li K et al (2013) A MapReduce task scheduling algorithm for deadline constraints. Clust Comput 16(4):651–662Zhang W, Rajasekaran S, Wood T et al (2014) MIMP: deadline and interference aware scheduling of Hadoop virtual machines. In: International symposium on cluster, cloud and grid computing, pp 394–403Teng F, Magoulès F, Yu L et al (2014) A novel real-time scheduling algorithm and performance analysis of a MapReduce-based cloud. J Supercomput 69(2):739–765Palanisamy B, Singh A, Liu L (2015) Cost-effective resource provisioning for MapReduce in a cloud. IEEE Trans Parallel Distrib Syst 26(5):1265–1279Hashem I, Anuar N, Marjani M et al (2018) Multi-objective scheduling of MapReduce jobs in big data processing. Multimed Tools Appl 77(8):9979–9994Xu X, Tang M, Tian Y (2017) QoS-guaranteed resource provisioning for cloud-based MapReduce in dynamical environments. Future Gener Comput Syst 78(1):18–30Li H, Wei X, Fu Q et al (2014) MapReduce delay scheduling with deadline constraint. Concurr Comput Pract Exp 26(3):766–778Polo J, Becerra Y, Carrera D et al (2013) Deadline-based MapReduce workload management. IEEE Trans Netw Serv Manag 10(2):231–244Chen C, Lin J, Kuo S (2018) MapReduce scheduling for deadline-constrained jobs in heterogeneous cloud computing systems. IEEE Trans Cloud Comput 6(1):127–140Kao Y, Chen Y (2016) Data-locality-aware MapReduce real-time scheduling framework. J Syst Softw 112:65–77Bok K, Hwang J, Lim J et al (2017) An efficient MapReduce scheduling scheme for processing large multimedia data. Multimed Tools Appl 76(16):1–24Chen Y, Borthakur D, Borthakur D et al (2012) Energy efficiency for large-scale MapReduce workloads with significant interactive analysis. In: ACM european conference on computer systems, pp 43–56Mashayekhy L, Nejad M, Grosu D et al (2015) Energy-aware scheduling of MapReduce jobs for big data applications. IEEE Trans Parallel Distrib Syst 26(10):2720–2733Lei H, Zhang T, Liu Y et al (2015) SGEESS: smart green energy-efficient scheduling strategy with dynamic electricity price for data center. J Syst Softw 108:23–38Oliveira D, Ocana K, Baiao F et al (2012) A provenance-based adaptive scheduling heuristic for parallel scientific workflows in clouds. J Grid Comput 10(3):521–552Li S, Hu S, Abdelzaher T (2015) The packing server for real-time scheduling of MapReduce workflows. In: IEEE real-time and embedded technology and applications symposium, pp 51–62Cai Z, Li X, Ruiz R et al (2017) A delay-based dynamic scheduling algorithm for bag-of-task workflows with stochastic task execution times in clouds. Future Gener Comput Syst 71:57–72Cai Z, Li X, Ruiz R (2017) Resource provisioning for task-batch based workflows with deadlines in public clouds. IEEE Trans Cloud Comput. https://doi.org/10.1109/TCC.2017.2663426Cai Z, Li X, Gupta J (2016) Heuristics for provisioning services to workflows in XaaS clouds. IEEE Trans Serv Comput 9(2):250–263Li X, Cai Z (2017) Elastic resource provisioning for cloud workflow applications. IEEE Trans Autom Sci Eng 14(2):1195–1210Tang Z, Liu M, Ammar A et al (2014) An optimized MapReduce workflow scheduling algorithm for heterogeneous computing. J Supercomput 72(6):1–21Xu C, Yang J, Yin K et al (2017) Optimal construction of virtual networks for cloud-based MapReduce workflows. Comput Netw 112:194–207Chiara S, Danilo A, Gianpaolo C et al (2013) Optimizing service selection and allocation in situational computing applications. IEEE Trans Serv Comput 6(3):414–428Baresi L, Elisabetta D, Carlo G et al (2007) A framework for the deployment of adaptable web service compositions. Serv Oriented Comput Appl 1(1):75–91Lim H, Herodotou H, Babu S (2012) Stubby: a transformation-based optimizer for MapReduce workflows. VLDB Endow 5(11):1196–1207Ke H, Li P, Guo S et al (2016) On traffic-aware partition and aggregation in MapReduce for big data applications. IEEE Trans Parallel Distrib Syst 27(3):818–828Yu W, Wang Y, Que X et al (2015) Virtual shuffling for efficient data movement in MapReduce. IEEE Trans Comput 64(2):556–568Chowdhury M, Zaharia M, Ma J et al (2011) Managing data transfers in computer clusters with orchestra. ACM SIGCOMM Comput Commun 41(4):98–109Guo D, Xie J, Zhou X et al (2015) Exploiting efficient and scalable shuffle transfers in future data center network. IEEE Trans Parallel Distrib Syst 26(4):997–1009Li D, Yu Y, He W et al (2015) Willow: saving data center network energy for network-limited flows. IEEE Trans Parallel Distrib Syst 26(9):2610–2620Tan J, Meng X, Zhang L (2013) Coupling task progress for MapReduce resource-aware scheduling. In: IEEE INFOCOM, pp 1618–1626Hammoud M, Rehman M, Sakr M (2012) Center-of-gravity reduce task scheduling to lower MapReduce network traffic. In: International conference on cloud computing, pp 49–58Guo Z, Fox G, Zhou M et al (2012) Improving resource utilization in MapReduce. In: International conference on cluster computing, pp 402–410Fischer M, Su X, Yin Y (2010) Assigning tasks for efficiency in Hadoop. In: Proceedings of the 22nd ACM symposium on parallelism in algorithms and architectures, pp 30–39Zhu Y, Jiang Y, Wu W et al (2014) Minimizing makespan and total completion time in MapReduce-like systems. In: IEEE INFOCOM, pp 2166–2174Kavulya S, Tan J, Gandhi R et al (2010) An analysis of traces from a production MapReduce cluster. In: IEEE/ACM international conference on cluster, cloud and grid computing, pp 94–103Abrishami S, Naghibzadeh M, Epema D (2013) Deadline-constrained workflow scheduling algorithms for Infrastructure as a Service clouds. Future Gener Comput Syst 29(1):158–169Fernando B, Edmundo R (2010) Towards the scheduling of multiple workflows on computational grids. J Grid Comput 8(3):419–441Tiwari N, Sarkar S, Bellur U et al (2015) Classification framework of MapReduce scheduling algorithms. ACM Comput Surv 47(3):1–38Verma A, Cherkasova L, Campbell R (2013) Orchestrating an ensemble of MapReduce jobs for minimizing their makespan. IEEE Trans Dependable Secur Comput 10(5):314–327Heintz B, Chandra A, Sitaraman R et al (2017) End-to-end optimization for geo-distributed MapReduce. IEEE Trans Cloud Comput 4(3):293–306Chen L, Li X (2018) Cloud workflow scheduling with hybrid resource provisioning. J Supercomput 74(12):6529–6553Li X, Jiang T, Ruiz R (2016) Heuristics for periodical batch job scheduling in a MapReduce computing framework. Inf Sci 326:119–133Vanhoucheabcd M, Maenhout B, Tavares L (2008) An evaluation of the adequacy of project network generators with systematically sampled networks. Eur J Oper Res 187(2):511–52

    Performance optimization of big data computing workflows for batch and stream data processing in multi-clouds

    Get PDF
    Workflow techniques have been widely used as a major computing solution in many science domains. With the rapid deployment of cloud infrastructures around the globe and the economic benefits of cloud-based computing and storage services, an increasing number of scientific workflows have migrated or are in active transition to clouds. As the scale of scientific applications continues to grow, it is now common to deploy various data- and network-intensive computing workflows such as serial computing workflows, MapReduce/Spark-based workflows, and Storm-based stream data processing workflows in multi-cloud environments, where inter-cloud data transfer oftentimes plays a significant role in both workflow performance and financial cost. Rigorous mathematical models are constructed to analyze the intra- and inter-cloud execution process of scientific workflows and a class of budget-constrained workflow mapping problems are formulated to optimize the network performance of big data workflows in multi-cloud environments. Research shows that these problems are all NP-complete and a heuristic solution is designed for each that takes into consideration module execution, data transfer, and I/O operations. The performance superiority of the proposed solutions over existing methods are illustrated through extensive simulations and further verified by real-life workflow experiments deployed in public clouds

    Improving Usability And Scalability Of Big Data Workflows In The Cloud

    Get PDF
    Big data workflows have recently emerged as the next generation of data-centric workflow technologies to address the five “V” challenges of big data: volume, variety, velocity, veracity, and value. More formally, a big data workflow is the computerized modeling and automation of a process consisting of a set of computational tasks and their data interdependencies to process and analyze data of ever increasing in scale, complexity, and rate of acquisition. The convergence of big data and workflows creates new challenges in workflow community. First, the variety of big data results in a need for integrating large number of remote Web services and other heterogeneous task components that can consume and produce data in various formats and models into a uniform and interoperable workflow. Existing approaches fall short in addressing the so-called shimming problem only in an adhoc manner and unable to provide a generic solution. We automatically insert a piece of code called shims or adaptors in order to resolve the data type mismatches. Second, the volume of big data results in a large number of datasets that needs to be queried and analyzed in an effective and personalized manner. Further, there is also a strong need for sharing, reusing, and repurposing existing tasks and workflows across different users and institutes. To overcome such limitations, we propose a folksonomy- based social workflow recommendation system to improve workflow design productivity and efficient dataset querying and analyzing. Third, the volume of big data results in the need to process and analyze data of ever increasing in scale, complexity, and rate of acquisition. But a scalable distributed data model is still missing that abstracts and automates data distribution, parallelism, and scalable processing. We propose a NoSQL collectional data model that addresses this limitation. Finally, the volume of big data combined with the unbound resource leasing capability foreseen in the cloud, facilitates data scientists to wring actionable insights from the data in a time and cost efficient manner. We propose BARENTS scheduler that supports high-performance workflow scheduling in a heterogeneous cloud-computing environment with a single objective to minimize the workflow makespan under a user provided budget constraint

    A New Efficient Cloud Model for Data Intensive Application

    Get PDF
    Cloud computing play an important role in data intensive application since it provide a consistent performance over time and it provide scalability and good fault tolerant mechanism Hadoop provide a scalable data intensive map reduce architecture Hadoop map task are executed on large cluster and consumes lot of energy and resources Executing these tasks requires lot of resource and energy which are expensive so minimizing the cost and resource is critical for a map reduce application So here in this paper we propose a new novel efficient cloud structure algorithm for data processing or computation on azure cloud Here we propose an efficient BSP based dynamic scheduling algorithm for iterative MapReduce for data intensive application on Microsoft azure cloud platform Our framework can be used on different domain application such as data analysis medical research dataminining etc Here we analyze the performance of our system by using a co-located cashing on the worker role and how it is improving the performance of data intensive application over Hadoop map reduce data intrinsic application The experimental result shows that our proposed framework properly utilizes cloud infrastructure service management overheads bandwith bottleneck and it is high scalable fault tolerant and efficien

    Resource Provisioning for Task-Batch Based Workflows with Deadlines in Public Clouds

    Full text link
    [EN] To meet the dynamic workload requirements in widespread task-batch based workflow applications, it is important to design algorithms for DAG-based platforms (such as Dryad, Spark and Pegasus) to rent virtual machines from public clouds dynamically. In terms of depths and functionalities, tasks of different task-batches are merged into task-units. A unit-aware deadline division method is investigated for properly dividing workflow deadlines to task deadlines so as to minimize the utilization of rented intervals. A rule-based task scheduling method is presented for allocating tasks to time slots of rented Virtual Machines (VMs) with a task right shifting operation and a weighted priority composite rule. A Unit-aware Rule-based Heuristic (URH) is proposed for elastically provisioning VMs to task-batch based workflows to minimize the rental cost in DAG-based cloud platforms. Effectiveness of the proposed URH methods is verified by comparing them against two adapted existing algorithms for similar problems on some realistic workflows.The authors would like to thank the reviewers for their constructive and useful comments. This work is supported by the National Natural Science Foundation of China (Grant No.61602243 and 61572127), the Natural Science Foundation of Jiangsu Province (Grant No.BK20160846), the Jiangsu Key Laboratory of Image and Video Understanding for Social Safety (Grant No. 30916014107). Ruben Ruiz is partially supported by the Spanish Ministry of Economy and Competitiveness, under the project "SCHEYARD" (DPI2015-65895-R) financed by FEDER funds.Cai, Z.; Li, X.; Ruiz GarcĂ­a, R. (2019). Resource Provisioning for Task-Batch Based Workflows with Deadlines in Public Clouds. IEEE Transactions on Cloud Computing. 7(3):814-826. https://doi.org/10.1109/TCC.2017.2663426S8148267
    • …
    corecore