165 research outputs found

    Holistic Resource Management for Sustainable and Reliable Cloud Computing:An Innovative Solution to Global Challenge

    Get PDF
    Minimizing the energy consumption of servers within cloud computing systems is of upmost importance to cloud providers towards reducing operational costs and enhancing service sustainability by consolidating services onto fewer active servers. Moreover, providers must also provision high levels of availability and reliability, hence cloud services are frequently replicated across servers that subsequently increases server energy consumption and resource overhead. These two objectives can present a potential conflict within cloud resource management decision making that must balance between service consolidation and replication to minimize energy consumption whilst maximizing server availability and reliability, respectively. In this paper, we propose a cuckoo optimization-based energy-reliability aware resource scheduling technique (CRUZE) for holistic management of cloud computing resources including servers, networks, storage, and cooling systems. CRUZE clusters and executes heterogeneous workloads on provisioned cloud resources and enhances the energy-efficiency and reduces the carbon footprint in datacenters without adversely affecting cloud service reliability. We evaluate the effectiveness of CRUZE against existing state-of-the-art solutions using the CloudSim toolkit. Results indicate that our proposed technique is capable of reducing energy consumption by 20.1% whilst improving reliability and CPU utilization by 17.1% and 15.7% respectively without affecting other Quality of Service parameters

    On the Use of Migration to Stop Illicit Channels

    Get PDF
    Side and covert channels (referred to collectively as illicit channels) are an insidious affliction of high security systems brought about by the unwanted and unregulated sharing of state amongst processes. Illicit channels can be effectively broken through isolation, which limits the degree by which processes can interact. The drawback of using isolation as a general mitigation against illicit channels is that it can be very wasteful when employed naively. In particular, permanently isolating every tenant of a public cloud service to its own separate machine would completely undermine the economics of cloud computing, as it would remove the advantages of consolidation. On closer inspection, it transpires that only a subset of a tenant's activities are sufficiently security sensitive to merit strong isolation. Moreover, it is not generally necessary to maintain isolation indefinitely, nor is it given that isolation must always be procured at the machine level. This work builds on these observations by exploring a fine-grained and hierarchical model of isolation, where fractions of a machine can be isolated dynamically using migration. Using different units of isolation allows a system to isolate processes from each other with a minimum of over-allocated resources, and having a dynamic and reconfigurable model enables isolation to be procured on-demand. The model is then realised as an implemented framework that allows the fine-grained provisioning of units of computation, managing migrations at the core, virtual CPU, process group, process/container and virtual machine level. Use of this framework is demonstrated in detecting and mitigating a machine-wide covert channel, and in implementing a multi-level moving target defence. Finally, this work describes the extension of post-copy live migration mechanisms to allow temporary virtual machine migration. This adds the ability to isolate a virtual machine on a short term basis, which subsequently allows migrations to happen at a higher frequency and with fewer redundant memory transfers, and also creates the opportunity of time-sharing a particular physical machine's features amongst a set of tenants' virtual machines
    • …
    corecore