7,904 research outputs found

    Space Transportation Materials and Structures Technology Workshop

    Get PDF
    The Space Transportation Materials and Structures Technology Workshop was held on September 23-26, 1991, in Newport News, Virginia. The workshop, sponsored by the NASA Office of Space Flight and the NASA Office of Aeronautics and Space Technology, was held to provide a forum for communication within the space materials and structures technology developer and user communities. Workshop participants were organized into a Vehicle Technology Requirements session and three working panels: Materials and Structures Technologies for Vehicle Systems, Propulsion Systems, and Entry Systems

    Composite structural materials

    Get PDF
    Technology utilization of fiber reinforced composite materials is discussed in the areas of physical properties, and life prediction. Programs related to the Composite Aircraft Program are described in detail

    Advanced Gas Turbine (AGT) powertrain system

    Get PDF
    A 74.5 kW(100 hp) advanced automotive gas turbine engine is described. A design iteration to improve the weight and production cost associated with the original concept is discussed. Major rig tests included 15 hours of compressor testing to 80% design speed and the results are presented. Approximately 150 hours of cold flow testing showed duct loss to be less than the design goal. Combustor test results are presented for initial checkout tests. Turbine design and rig fabrication is discussed. From a materials study of six methods to fabricate rotors, two have been selected for further effort. A discussion of all six methods is given

    Liquid rocket metal tanks and tank components

    Get PDF
    Significant guidelines are presented for the successful design of aerospace tanks and tank components, such as expulsion devices, standpipes, and baffles. The state of the art is reviewed, and the design criteria are presented along with recommended practices. Design monographs are listed

    Application Of Modeling And Simulation To Reduce Costs Of Acquisition Within Triple Constraints

    Get PDF
    A key component of defense acquisition programs operating using the Integrated Defense Acquisition, Technology, and Logistics Life Cycle Management System is the reliance on the triple constraints of cost, schedule, and performance. While the use of Modeling and Simulation tools and capabilities is prevalent and well established in the Research and Development, Analysis, and Training domains, acquisition programs have been reluctant to use Modeling and Simulation in any great depth due to inaccessibility of tools, Subject Matter Experts, and implications to cost and schedule. This presents a unique Simulation Management challenge which requires an in-depth understanding of the technical capabilities available within an organization, their applicability to support immediate needs, and the flexibility to utilize these capabilities within the programmatic environment to provide a value added service. The focus of this dissertation is to study the use of Modeling and Simulation in the Defense arena, and to review the applicability of Modeling and Simulation within programmatic acquisition environments which are constrained by cost, schedule, and performance. This research draws comparisons between Modeling and Simulation to other Process Improvement initiatives, such as Lean and Six Sigma, and reviews case studies involving the application of Modeling and Simulation within triple constrained environments. The development of alternate scenarios allows cost benefit analysis to be conducted for each scenario and alternate scenario, developing a case for whether or not the application of Modeling and Simulation within the triple constrained environment delivered any consequential benefit to the acquisition process. Observations are made regarding the level of Modeling and Simulation as applied within each case study, and generalized recommendations are made for the inclusion of cost benefit iv analysis methodologies for analyzing proposed Modeling and Simulation activities within acquisition programs. Limitations and shortcomings of the research activity are discussed, along with recommendations for potential future work in the Simulation Management field, both with respect to the specific case studies reviewed in this study and the general field

    Status of NASA In-Space Propulsion Technologies and Their Infusion Potential

    Get PDF
    Since 2001, the In-Space Propulsion Technology (ISPT) program has been developing in-space propulsion technologies that will enable or enhance NASA robotic science missions. These in-space propulsion technologies have broad applicability to future competed Discovery and New Frontiers mission solicitations, and are potentially enabling for future NASA flagship and sample return missions currently being considered. This paper provides status of the technology development of several in-space propulsion technologies that are ready for infusion into future missions. The technologies that are ready for flight infusion are: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies that will be ready for flight infusion in FY12/13 are 1) Advanced Xenon Flow Control System, and 2) ultra-lightweight propellant tank technology advancements and their infusion potential will be also discussed. The paper will also describe the ISPT project s future focus on propulsion for sample return missions: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) needed for sample return missions from many different destinations; and 3) electric propulsion for sample return and low cost missions. These technologies are more vehicle-focused, and present a different set of technology infusion challenges. Systems/Mission Analysis focused on developing tools and assessing the application of propulsion technologies to a wide variety of mission concepts

    Evaluate the application of modal test and analysis processes to structural fault detection in MSFC-STS project elements

    Get PDF
    The Space Transportation System (STS) is a very complex and expensive flight system which is intended to carry payloads into low Earth orbit and return. A catastrophic failure of the STS (such as experienced in the 51-L incident) results in the loss of both human life as well as very expensive hardware. One impact of this incident was to reaffirm the need to do everything possible to insure the integrity and reliability of the STS is sufficient to produce a safe flight. One means of achieving this goal is to expand the number of inspection technologies available for use on the STS. The purpose was to begin to evaluate the possible use of assessing the structural integrity of STS components for which Marshall Space Flight Center (MSFC) has responsibility. This entailed reviewing the available literature and determining a low-level experimental program which could be performed by MSFC and would help establish the feasibility of using this technology for structural fault detection

    Challenges towards Structural Integrity and Performance Improvement of Welded Structures

    Get PDF
    Welding is a fabrication process that joint materials, is extensively utilized in almost every field of metal constructions. Heterogeneity in mechanical properties, metallurgical and geometrical defects, post-weld residual stresses and distortion due to non-linear welding processes are prime concerns for performance reduction and failures of welded structures. Consequently, structural integrity analysis and performance improvement of weld joints are important issues that must be considered for structural safety and durability under loading. In this study, an extensive experimental program and analysis were undertaken on the challenges towards structural integrity analysis and performance improvement of different welded joints. Two widely used welding techniques including solid-state “friction- stir- welding (FSW)” and fusion arc “gas tungsten arc welding (GTAW)” were employed on two widely utilized materials, namely aluminum alloys and structural steels. Various destructive and non-destructive techniques were utilized for structural integrity analysis of the welded joints. Furthermore, various “post-weld treatment (PWT)” techniques were employed to improve mechanical performances of weld joints. The work herein is divided into six different sections including: (i) Establishment of an empirical correlation for FSW of aluminum alloys. The developed empirical correlation relates the three critical FSW process parameters and was found to successfully distinguish defective and defect-free weld schedules; (ii) Development of an optimized “adaptive neuro-fuzzy inference system (ANFIS)” model utilizing welding process parameters to predict ultimate tensile strength (UTS) of FSW joints; (iii) Determination of an optimum post-weld heat treatment (PWHT) condition for FS-welded aluminum alloys; (iv) Exploration on the influence of non-destructively evaluated weld-defects and obtain an optimum PWHT condition for GTA-welded aluminum alloys; (v) Investigation on the influence of PWHT and electrolytic-plasma-processing (EPP) on the performance of welded structural steel joints; and finally, (vi) Biaxial fatigue behavior evaluation of welded structural steel joints. The experimental research could be utilized to obtain defect free weld joints, establish weld acceptance/rejection criteria, and for the better design of welded aluminum alloy and steel structures. All attempted research steps mentioned above were carried out successfully. The results obtained within this effort will increase overall understanding of the structural integrity of welded aluminum alloys and steel structures

    Bridges Structural Health Monitoring and Deterioration Detection Synthesis of Knowledge and Technology

    Get PDF
    INE/AUTC 10.0

    Apollo Lightcraft Project

    Get PDF
    The ultimate goal for this NASA/USRA-sponsored Apollo Lightcraft Project is to develop a revolutionary manned launch vehicle technology which can potentially reduce payload transport costs by a factor of 1000 below the Space Shuttle Orbiter. The Rensselaer design team proposes to utilize advanced, highly energetic, beamed-energy sources (laser, microwave) and innovative combined-cycle (airbreathing/rocket) engines to accomplish this goal. The research effort focuses on the concept of a 100 MW-class, laser-boosted Lightcraft Technology Demonstrator (LTD) drone. The preliminary conceptual design of this 1.4 meter diameter microspacecraft involved an analytical performance analysis of the transatmospheric engine in its two modes of operation (including an assessment of propellant and tankage requirements), and a detailed design of internal structure and external aeroshell configuration. The central theme of this advanced propulsion research was to pick a known excellent working fluid (i.e., air or LN sub 2), and then to design a combined-cycle engine concept around it. Also, a structural vibration analysis was performed on the annular shroud pulsejet engine. Finally, the sensor satellite mission was examined to identify the requisite subsystem hardware: e.g., electrical power supply, optics and sensors, communications and attitude control systems
    corecore