52 research outputs found

    High-Bandwidth Voltage-Controlled Oscillator based architectures for Analog-to-Digital Conversion

    Get PDF
    The purpose of this thesis is the proposal and implementation of data conversion open-loop architectures based on voltage-controlled oscillators (VCOs) built with ring oscillators (RO-based ADCs), suitable for highly digital designs, scalable to the newest complementary metal-oxide-semiconductor (CMOS) nodes. The scaling of the design technologies into the nanometer range imposes the reduction of the supply voltage towards small and power-efficient architectures, leading to lower voltage overhead of the transistors. Additionally, phenomena like a lower intrinsic gain, inherent noise, and parasitic effects (mismatch between devices and PVT variations) make the design of classic structures for ADCs more challenging. In recent years, time-encoded A/D conversion has gained relevant popularity due to the possibility of being implemented with mostly digital structures. Within this trend, VCOs designed with ring oscillator based topologies have emerged as promising candidates for the conception of new digitization techniques. RO-based data converters show excellent scalability and sensitivity, apart from some other desirable properties, such as inherent quantization noise shaping and implicit anti-aliasing filtering. However, their nonlinearity and the limited time delay achievable in a simple NOT gate drastically limits the resolution of the converter, especially if we focus on wide-band A/D conversion. This thesis proposes new ways to alleviate these issues. Firstly, circuit-based techniques to compensate for the nonlinearity of the ring oscillator are proposed and compared to equivalent state-of-the-art solutions. The proposals are designed and simulated in a 65-nm CMOS node for open-loop RO-based ADC architectures. One of the techniques is also validated experimentally through a prototype. Secondly, new ways to artificially increase the effective oscillation frequency are introduced and validated by simulations. Finally, new approaches to shape the quantization noise and filter the output spectrum of a RO-based ADC are proposed theoretically. In particular, a quadrature RO-based band-pass ADC and a power-efficient Nyquist A/D converter are proposed and validated by simulations. All the techniques proposed in this work are especially devoted for highbandwidth applications, such as Internet-of-Things (IoT) nodes or maximally digital radio receivers. Nevertheless, their field of application is not restricted to them, and could be extended to others like biomedical instrumentation or sensing.El propósito de esta tesis doctoral es la propuesta y la implementación de arquitecturas de conversión de datos basadas en osciladores en anillos, compatibles con diseños mayoritariamente digitales, escalables en los procesos CMOS de fabricación más modernos donde las estructuras digitales se ven favorecidas. La miniaturización de las tecnologías CMOS de diseño lleva consigo la reducción de la tensión de alimentación para el desarrollo de arquitecturas pequeñas y eficientes en potencia. Esto reduce significativamente la disponibilidad de tensión para saturar transistores, lo que añadido a una ganancia cada vez menor de los mismos, ruido y efectos parásitos como el “mismatch” y las variaciones de proceso, tensión y temperatura han llevado a que sea cada vez más complejo el diseño de estructuras analógicas eficientes. Durante los últimos años la conversión A/D basada en codificación temporal ha ganado gran popularidad dado que permite la implementación de estructuras mayoritariamente digitales. Como parte de esta evolución, los osciladores controlados por tensión diseñados con topologías de oscilador en anillo han surgido como un candidato prometedor para la concepción de nuevas técnicas de digitalización. Los convertidores de datos basados en osciladores en anillo son extremadamente sensibles (variación de frecuencia con respecto a la señal de entrada) así como escalables, además de otras propiedades muy atractivas, como el conformado espectral de ruido de cuantificación y el filtrado “anti-aliasing”. Sin embargo, su respuesta no lineal y el limitado tiempo de retraso alcanzable por una compuerta NOT restringen la resolución del conversor, especialmente para conversión A/D en aplicaciones de elevado ancho de banda. Esta tesis doctoral propone nuevas técnicas para aliviar este tipo de problemas. En primer lugar, se proponen técnicas basadas en circuito para compensar el efecto de la no linealidad en los osciladores en anillo, y se comparan con soluciones equivalentes ya publicadas. Las propuestas se diseñan y simulan en tecnología CMOS de 65 nm para arquitecturas en lazo abierto. Una de estas técnicas presentadas es también validada experimentalmente a través de un prototipo. En segundo lugar, se introducen y validan por simulación varias formas de incrementar artificialmente la frecuencia de oscilación efectiva. Para finalizar, se proponen teóricamente dos enfoques para configurar nuevas formas de conformación del ruido de cuantificación y filtrado del espectro de salida de los datos digitales. En particular, son propuestos y validados por simulación un ADC pasobanda en cuadratura de fase y un ADC de Nyquist de gran eficiencia en potencia. Todas las técnicas propuestas en este trabajo están destinadas especialmente para aplicaciones de alto ancho de banda, tales como módulos para el Internet de las cosas o receptores de radiofrecuencia mayoritariamente digitales. A pesar de ello, son extrapolables también a otros campos como el de la instrumentación biomédica o el de la medición de señales mediante sensores.Programa de Doctorado en Ingeniería Eléctrica, Electrónica y Automática por la Universidad Carlos III de MadridPresidente: Juan Pablo Alegre Pérez.- Secretario: Celia López Ongil.- Vocal: Fernando Cardes Garcí

    Digital-Based Analog Processing in Nanoscale CMOS ICs for IoT Applications

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Digital-based analog processing in nanoscale CMOS ICs for IoT applications

    Get PDF
    The Internet-of-Things (IoT) concept has been opening up a variety of applications, such as urban and environmental monitoring, smart health, surveillance, and home automation. Most of these IoT applications require more and more power/area efficient Complemen tary Metal–Oxide–Semiconductor (CMOS) systems and faster prototypes (lower time-to market), demanding special modifications in the current IoT design system bottleneck: the analog/RF interfaces. Specially after the 2000s, it is evident that there have been significant improvements in CMOS digital circuits when compared to analog building blocks. Digital circuits have been taking advantage of CMOS technology scaling in terms of speed, power consump tion, and cost, while the techniques running behind the analog signal processing are still lagging. To decrease this historical gap, there has been an increasing trend in finding alternative IC design strategies to implement typical analog functions exploiting Digital in-Concept Design Methodologies (DCDM). This idea of re-thinking analog functions in digital terms has shown that Analog ICs blocks can also avail of the feature-size shrinking and energy efficiency of new technologies. This thesis deals with the development of DCDM, demonstrating its compatibility for Ultra-Low-Voltage (ULV) and Power (ULP) IoT applications. This work proves this state ment through the proposing of new digital-based analog blocks, such as an Operational Transconductance Amplifiers (OTAs) and an ac-coupled Bio-signal Amplifier (BioAmp). As an initial contribution, for the first time, a silicon demonstration of an embryonic Digital-Based OTA (DB-OTA) published in 2013 is exhibited. The fabricated DB-OTA test chip occupies a compact area of 1,426 µm2 , operating at supply voltages (VDD) down to 300 mV, consuming only 590 pW while driving a capacitive load of 80pF. With a Total Harmonic Distortion (THD) lower than 5% for a 100mV input signal swing, its measured small-signal figure of merit (FOMS) and large-signal figure of merit (FOML) are 2,101 V −1 and 1,070, respectively. To the best of this thesis author’s knowledge, this measured power is the lowest reported to date in OTA literature, and its figures of merit are the best in sub-500mV OTAs reported to date. As the second step, mainly due to the robustness limitation of previous DB-OTA, a novel calibration-free digital-based topology is proposed, named here as Digital OTA (DIG OTA). A 180-nm DIGOTA test chip is also developed exhibiting an area below the 1000 µm2 wall, 2.4nW power under 150pF load, and a minimum VDD of 0.25 V. The proposed DIGOTA is more digital-like compared with DB-OTA since no pseudo-resistor is needed. As the last contribution, the previously proposed DIGOTA is then used as a building block to demonstrate the operation principle of power-efficient ULV and ultra-low area (ULA) fully-differential, digital-based Operational Transconductance Amplifier (OTA), suitable for microscale biosensing applications (BioDIGOTA) such as extreme low area Body Dust. Measured results in 180nm CMOS confirm that the proposed BioDIGOTA can work with a supply voltage down to 400 mV, consuming only 95 nW. The BioDIGOTA layout occupies only 0.022 mm2 of total silicon area, lowering the area by 3.22X times compared to the current state of the art while keeping reasonable system performance, such as 7.6 Noise Efficiency Factor (NEF) with 1.25 µVRMS input-referred noise over a 10 Hz bandwidth, 1.8% of THD, 62 dB of the common-mode rejection ratio (CMRR) and 55 dB of power supply rejection ratio (PSRR). After reviewing the current DCDM trend and all proposed silicon demonstrations, the thesis concludes that, despite the current analog design strategies involved during the analog block development

    저 잡음 디지털 위상동기루프의 합성

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2014. 2. 정덕균.As a device scaling proceeds, Charge Pump PLL has been confronted by many design challenges. Especially, a leakage current in loop filter and reduced dynamic range due to a lower operating voltage make it difficult to adopt a conventional analog PLL architecture for a highly scaled technology. To solve these issues, All Digital PLL (ADPLL) has been widely studied recently. ADPLL mitigates a filter leakage and a reduced dynamic range issues by replacing the analog circuits with digital ones. However, it is still difficult to get a low jitter under low supply voltage. In this thesis, we propose a dual loop architecture to achieve a low jitter even with a low supply voltage. And bottom-up based multi-step TDC and DCO are proposed to meet both fine resolution and wide operation range. In the aspect of design methodology, ADPLL has relied on a full custom design method although ADPLL is fully described in HDL (Hardware Description Language). We propose a new cell based layout technique to automatically synthesize the whole circuit and layout. The test chip has no linearity degradation although it is fully synthesized using a commercially available auto P&R tool. We has implemented an all digital pixel clock generator using the proposed dual loop architecture and the cell based layout technique. The entire circuit is automatically synthesized using 28nm CMOS technology. And s-domain linear model is utilized to optimize the jitter of the dual-loop PLL. Test chip occupies 0.032mm2, and achieves a 15ps_rms integrated jitter although it has extremely low input reference clock of 100 kHz. The whole circuit operates at 1.0V and consumes only 3.1mW.Abstract i Lists of Figures vii Lists of Tables xiii 1. Introduction 1 1.1 Thesis Motivation and Organization 1 1.1.1 Motivation 1 1.1.2 Thesis Organization 2 1.2 PLL Design Issues in Scaled CMOS Technology 3 1.2.1 Low Supply Voltage 4 1.2.2 High Leakage Current 6 1.2.3 Device Reliability: NBTI, HCI, TDDB, EM 8 1.2.4 Mismatch due to Proximity Effects: WPE, STI 11 1.3 Overview of Clock Synthesizers 14 1.3.1 Dual Voltage Charge Pump PLL 14 1.3.2 DLL Based Edge Combining Clock Multiplier 16 1.3.3 Recirculation DLL 17 1.3.4 Reference Injected PLL 18 1.3.5 All Digital PLL 19 1.3.6 Flying Adder Clock Synthesizer 20 1.3.7 Dual Loop Hybrid PLL 21 1.3.8 Comparisons 23 2. Tutorial of ADPLL Design 25 2.1 Introduction 25 2.1.1 Motivation for a pure digital 25 2.1.2 Conversion to digital domain 26 2.2 Functional Blocks 26 2.2.1 TDC, and PFD/Charge Pump 26 2.2.2 Digital Loop Filter and Analog R/C Loop Filter 29 2.2.3 DCO and VCO 34 2.2.4 S-domain Model of the Whole Loop 34 2.2.5 ADPLL Loop Design Flow 36 2.3 S-domain Noise Model 41 2.3.1 Noise Transfer Functions 41 2.3.2 Quantization Noise due to Limited TDC Resolution 45 2.3.3 Quantization Noise due to Divider ΔΣ Noise 46 2.3.4 Quantization Noise due to Limited DCO Resolution 47 2.3.5 Quantization Noise due to DCO ΔΣ Dithering 48 2.3.6 Random Noise of DCO and Input Clock 50 2.3.7 Over-all Phase Noise 50 3. Synthesizable All Digital Pixel Clock PLL Design 53 3.1 Overview 53 3.1.1 Introduction of Pixel Clock PLL 53 3.1.1 Design Specifications 55 3.2 Proposed Architecture 60 3.2.1 All Digital Dual Loop PLL 60 3.2.2 2-step controlled TDC 61 3.2.3 3-step controlled DCO 64 3.2.4 Digital Loop Filter 76 3.3 S-domain Noise Model 78 3.4 Loop Parameter Optimization Based on the s-domain Model 85 3.5 RTL and Gate Level Circuit Design 88 3.5.1 Overview of the design flow 88 3.5.2 Behavioral Simulation and Gate level synthesis 89 3.5.1 Preventing a meta-stability 90 3.5.1 Reusable Coding Style 92 3.6 Layout Synthesis 94 3.6.1 Auto P&R 94 3.6.2 Design of Unit Cells 97 3.6.3 Linearity Degradation in Synthesized TDC 98 3.6.4 Linearity Degradation in Synthesized DCO 106 3.7 Experiment Results 109 3.7.1 DCO measurement 109 3.7.2 PLL measurement 113 3.8 Conclusions 117 A. Device Technology Scaling Trends 118 A.1. Motivation for Technology Scaling 118 A.2. Constant Field Scaling 120 A.3. Quasi Constant Voltage Scaling 123 A.4. Device Technology Trends in Real World 124 B. Spice Simulation Tip for a DCO 137 C. Phase Noise to Jitter Conversion 141 Bibliography 144 초록 151Docto

    Design of Analog-to-Digital Converters with Embedded Mixing for Ultra-Low-Power Radio Receivers

    Get PDF
    In the field of radio receivers, down-conversion methods usually rely on one (or more) explicit mixing stage(s) before the analog-to-digital converter (ADC). These stages not only contribute to the overall power consumption but also have an impact on area and can compromise the receiver’s performance in terms of noise and linearity. On the other hand, most ADCs require some sort of reference signal in order to properly digitize an analog input signal. The implementation of this reference signal usually relies on bandgap circuits and reference buffers to generate a constant, stable, dc signal. Disregarding this conventional approach, the work developed in this thesis aims to explore the viability behind the usage of a variable reference signal. Moreover, it demonstrates that not only can an input signal be properly digitized, but also shifted up and down in frequency, effectively embedding the mixing operation in an ADC. As a result, ADCs in receiver chains can perform double-duty as both a quantizer and a mixing stage. The lesser known charge-sharing (CS) topology, within the successive approximation register (SAR) ADCs, is used for a practical implementation, due to its feature of “pre-charging” the reference signal prior to the conversion. Simulation results from an 8-bit CS-SAR ADC designed in a 0.13 μm CMOS technology validate the proposed technique

    Design methodology for reliable and energy efficient self-tuned on-chip voltage regulators

    Get PDF
    The energy-efficiency needs in computing systems, ranging from high performance processors to low-power devices is steadily on the rise, resulting in increasing popularity of on-chip voltage regulators (VR). The high-frequency and high bandwidth on-chip voltage regulators such as Inductive voltage regulators (IVR) and Digital Low Dropout regulators (DLDO) significantly enhance the energy-efficiency of a SoC by reducing supply noise and enabling faster voltage transitions. However, IVRs and DLDOs need to cope with the higher variability that exists in the deep nanometer digital nodes since they are fabricated on the same die as the digital core affecting performance of both the VR and digital core. Moreover, in most modern SoCs where multiple power domains are preferred, each VR needs to be designed and optimized for a target load demand which significantly increases the design time and time to market for VR assisted SoCs. This thesis investigates a performance-based auto-tuning algorithm utilizing performance of digital core to tune VRs against variations and improve performance of both VR and the core. We further propose a fully synthesizable VR architecture and an auto-generation tool flow that can be used to design and optimize a VR for given target specifications and auto-generate a GDS layout. This would reduce the design time drastically. And finally, a flexible precision IVR architecture is also explored to further improve transient performance and tolerance to process variations. The proposed IVR and DLDO designs with an AES core and auto-tuning circuits are prototyped in two testchips in 130nm CMOS process and one test chip in 65nm CMOS process. The measurements demonstrate improved performance of IVR and AES core due to performance-based auto-tuning. Moreover, the synthesizable architectures of IVR and DLDO implemented using auto-generation tool flow showed competitive performance with state of art full custom designs with orders of magnitude reduction in design time. Additional improvement in transient performance of IVR is also observed due to the flexible precision feedback loop design.Ph.D

    Applications in Electronics Pervading Industry, Environment and Society

    Get PDF
    This book features the manuscripts accepted for the Special Issue “Applications in Electronics Pervading Industry, Environment and Society—Sensing Systems and Pervasive Intelligence” of the MDPI journal Sensors. Most of the papers come from a selection of the best papers of the 2019 edition of the “Applications in Electronics Pervading Industry, Environment and Society” (APPLEPIES) Conference, which was held in November 2019. All these papers have been significantly enhanced with novel experimental results. The papers give an overview of the trends in research and development activities concerning the pervasive application of electronics in industry, the environment, and society. The focus of these papers is on cyber physical systems (CPS), with research proposals for new sensor acquisition and ADC (analog to digital converter) methods, high-speed communication systems, cybersecurity, big data management, and data processing including emerging machine learning techniques. Physical implementation aspects are discussed as well as the trade-off found between functional performance and hardware/system costs

    PROCESS AWARE ANALOG-CENTRIC SINGLE LEAD ECG ACQUISITION AND CLASSIFICATION CMOS FRONTEND

    Get PDF
    The primary objective of this research work is the development of a low power single-lead ECG analog front-end (AFE) architecture which includes acquisition, digitization, process aware efficient gain and frequency control mechanism and a low complexity classifier for the detecting asystole, extreme bardycardia and tachycardia. Recent research on ECG recording systems focuses on the design of a compact single-lead wearable/portable devices with ultra-low-power consumption and in-built hardware for diagnosis and prognosis. Since, the amplitude of the ECG signal varies from hundreds of µV to a few mV, and has a bandwidth of DC to 250 Hz, conventional front-ends use an instrument amplifier followed by a programmable gain amplifier (PGA) to amplify the input ECG signal appropriately. This work presents an mixed signal ECG fronted with an ultra-low power two-stage capacitive-coupled signal conditioning circuit (or an AFE), providing programmable amplification along with tunable 2nd order high pass and lowpass filter characteristics. In the contemporary state-of-the-art ECG recording systems, the gain of the amplifier is controlled by external digital control pins which are in turn dynamically controlled through a DSP. Therefore, an efficient automatic gain control mechanism with minimal area overhead and consuming power in the order of nano watts only. The AGC turns the subsequent ADC on only after output of the PGA (or input of the ADC) reaches a level for which the ADC achieves maximum signal-to-noise-ratio (SNR), hence saving considerable startup power and avoiding the use of DSP. Further, in any practical filter design, the low pass cut-off frequency is prone to deviate from its nominal value across process and temperature variations. Therefore, post-fabrication calibration is essential, before the signal is fed to an ADC, to minimize this deviation, prevent signal degradation due to aliasing of higher frequencies into the bandwidth for classification of ECG signals, to switch to low resolution processing, hence saving power and enhances battery lifetime. Another short-coming noticed in the literature published so far is that the classification algorithm is implemented in digital domain, which turns out to be a power hungry approach. Moreover, Although analog domain implementations of QRS complexes detection schemes have been reported, they employ an external micro-controller to determine the threshold voltage. In this regard, finally a power-efficient low complexity CMOS fully analog classifier architecture and a heart rate estimator is added to the above scheme. It reduces the overall system power consumption by reducing the computational burden on the DSP. The complete proposed scheme consists of (i) an ultra-low power QRS complex detection circuit using an autonomous dynamic threshold voltage, hence discarding the need of any external microcontroller/DSP and calibration (ii) a power efficient analog classifier for the detection of three critical alarm types viz. asystole, extreme bradycardia and tachycardia. Additionally, a heart rate estimator that provides the number of QRS complexes within a period of one minute for cardiac rhythm (CR) and heart rate variability (HRV) analysis. The complete proposed architecture is implemented in UMC 0.18 µm CMOS technology with 1.8 V supply. The functionality of each of the individual blocks are successfully validated using postextraction process corner simulations and through real ECG test signals taken from the PhysioNet database. The capacitive feedback amplifier, Σ∆ ADC, AGC and the AFT are fabricated, and the measurement results are discussed here. The analog classification scheme is successfully validated using embed NXP LPC1768 board, discrete peak detector prototype and FPGA software interfac
    corecore