404,050 research outputs found

    Variational shape matching for shape classification and retrieval

    No full text
    International audienceIn this paper we define a multi-scale distance between shapes based on geodesics in the shape space. The proposed distance, robust to outliers, uses shape matching to compare shapes locally. The multi-scale analysis is introduced in order to address local and global variabilities. The resulting similarity measure is invariant to translation, rotation and scaling independently of constraints or landmarks, but constraints can be added to the approach formulation when needed. An evaluation of the proposed approach is reported for shape classification and shape retrieval on the part B of the MPEG-7 shape database. The proposed approach is shown to significantly outperform previous works and reaches 89.05% of retrieval accuracy and 98.86% of correct classification rate

    FMIRS : a fuzzy indexing and retrieval system of mosaic-image database

    Get PDF
    This work is dedicated to present a fuzzy-set based system useful for image indexing and retrieval pertaining to historical Roman-mosaics. This exceptional collection of mosaics dates back from the first to fourth centuries AD. Considering the state of these images (i.e. noise, color degradation, etc.) a fuzzy features definition is necessary. Thereby, we use a robust to rotation, scale and translation fuzzy extended curvature scale space (CSS) as shape descriptor. Furthermore, we propose a fuzzy color-quantization approach, applied on mosaics, using HSV color space. The system allows for two user-friendly querying modes: a drawing based mode and the mode that fusion both shape and color features using a unified fuzzy similarity measure. Based on queries of variable complexity, the advanced fuzzy system has managed to achieve interesting recall, precision and F-measure rates

    FMIRS : a fuzzy indexing and retrieval system of mosaic-image database

    Get PDF
    This work is dedicated to present a fuzzy-set based system useful for image indexing and retrieval pertaining to historical Roman-mosaics. This exceptional collection of mosaics dates back from the first to fourth centuries AD. Considering the state of these images (i.e. noise, color degradation, etc.) a fuzzy features definition is necessary. Thereby, we use a robust to rotation, scale and translation fuzzy extended curvature scale space (CSS) as shape descriptor. Furthermore, we propose a fuzzy color-quantization approach, applied on mosaics, using HSV color space. The system allows for two user-friendly querying modes: a drawing based mode and the mode that fusion both shape and color features using a unified fuzzy similarity measure. Based on queries of variable complexity, the advanced fuzzy system has managed to achieve interesting recall, precision and F-measure rates

    Size distribution of dust grains: A problem of self-similarity

    Get PDF
    Distribution functions describing the results of natural processes frequently show the shape of power laws, e.g., mass functions of stars and molecular clouds, velocity spectrum of turbulence, size distributions of asteroids, micrometeorites and also interstellar dust grains. It is an open question whether this behavior is a result simply coming about by the chosen mathematical representation of the observational data or reflects a deep-seated principle of nature. The authors suppose the latter being the case. Using a dust model consisting of silicate and graphite grains Mathis et al. (1977) showed that the interstellar extinction curve can be represented by taking a grain radii distribution of power law type n(a) varies as a(exp -p) with 3.3 less than or equal to p less than or equal to 3.6 (example 1) as a basis. A different approach to understanding power laws like that in example 1 becomes possible by the theory of self-similar processes (scale invariance). The beta model of turbulence (Frisch et al., 1978) leads in an elementary way to the concept of the self-similarity dimension D, a special case of Mandelbrot's (1977) fractal dimension. In the frame of this beta model, it is supposed that on each stage of a cascade the system decays to N clumps and that only the portion beta N remains active further on. An important feature of this model is that the active eddies become less and less space-filling. In the following, the authors assume that grain-grain collisions are such a scale-invarient process and that the remaining grains are the inactive (frozen) clumps of the cascade. In this way, a size distribution n(a) da varies as a(exp -(D+1))da (example 2) results. It seems to be highly probable that the power law character of the size distribution of interstellar dust grains is the result of a self-similarity process. We can, however, not exclude that the process leading to the interstellar grain size distribution is not fragmentation at all. It could be, e.g., diffusion-limited growth discussed by Sander (1986), who applied the theory of fractal geometry to the classification of non-equilibrium growth processes. He received D=2.4 for diffusion-limited aggregation in 3d-space

    Visual analytics of delays and interaction in movement data

    Get PDF
    Maximilian Konzack, Tim Ophelders, Michel A. Westenberg and Kevin Buchin are supported by the Netherlands Organisation for Scientific Research (NWO) under grant no. 612.001.207 (Maximilian Konzack, Michel A. Westenberg and Kevin Buchin) and grant no. 639.023.208 (Tim Ophelders).The analysis of interaction between movement trajectories is of interest for various domains when movement of multiple objects is concerned. Interaction often includes a delayed response, making it difficult to detect interaction with current methods that compare movement at specific time intervals. We propose analyses and visualizations, on a local and global scale, of delayed movement responses, where an action is followed by a reaction over time, on trajectories recorded simultaneously. We developed a novel approach to compute the global delay in subquadratic time using a fast Fourier transform (FFT). Central to our local analysis of delays is the computation of a matching between the trajectories in a so-called delay space. It encodes the similarities between all pairs of points of the trajectories. In the visualization, the edges of the matching are bundled into patches, such that shape and color of a patch help to encode changes in an interaction pattern. To evaluate our approach experimentally, we have implemented it as a prototype visual analytics tool and have applied the tool on three bidimensional data sets. For this we used various measures to compute the delay space, including the directional distance, a new similarity measure, which captures more complex interactions by combining directional and spatial characteristics. We compare matchings of various methods computing similarity between trajectories. We also compare various procedures to compute the matching in the delay space, specifically the Fréchet distance, dynamic time warping (DTW), and edit distance (ED). Finally, we demonstrate how to validate the consistency of pairwise matchings by computing matchings between more than two trajectories.Publisher PDFPeer reviewe

    Plant image retrieval using color, shape and texture features

    Get PDF
    We present a content-based image retrieval system for plant image retrieval, intended especially for the house plant identification problem. A plant image consists of a collection of overlapping leaves and possibly flowers, which makes the problem challenging.We studied the suitability of various well-known color, shape and texture features for this problem, as well as introducing some new texture matching techniques and shape features. Feature extraction is applied after segmenting the plant region from the background using the max-flow min-cut technique. Results on a database of 380 plant images belonging to 78 different types of plants show promise of the proposed new techniques and the overall system: in 55% of the queries, the correct plant image is retrieved among the top-15 results. Furthermore, the accuracy goes up to 73% when a 132-image subset of well-segmented plant images are considered

    Statistical shape analysis for bio-structures : local shape modelling, techniques and applications

    Get PDF
    A Statistical Shape Model (SSM) is a statistical representation of a shape obtained from data to study variation in shapes. Work on shape modelling is constrained by many unsolved problems, for instance, difficulties in modelling local versus global variation. SSM have been successfully applied in medical image applications such as the analysis of brain anatomy. Since brain structure is so complex and varies across subjects, methods to identify morphological variability can be useful for diagnosis and treatment. The main objective of this research is to generate and develop a statistical shape model to analyse local variation in shapes. Within this particular context, this work addresses the question of what are the local elements that need to be identified for effective shape analysis. Here, the proposed method is based on a Point Distribution Model and uses a combination of other well known techniques: Fractal analysis; Markov Chain Monte Carlo methods; and the Curvature Scale Space representation for the problem of contour localisation. Similarly, Diffusion Maps are employed as a spectral shape clustering tool to identify sets of local partitions useful in the shape analysis. Additionally, a novel Hierarchical Shape Analysis method based on the Gaussian and Laplacian pyramids is explained and used to compare the featured Local Shape Model. Experimental results on a number of real contours such as animal, leaf and brain white matter outlines have been shown to demonstrate the effectiveness of the proposed model. These results show that local shape models are efficient in modelling the statistical variation of shape of biological structures. Particularly, the development of this model provides an approach to the analysis of brain images and brain morphometrics. Likewise, the model can be adapted to the problem of content based image retrieval, where global and local shape similarity needs to be measured
    corecore