150,077 research outputs found

    A radio-polarisation and rotation measure study of the Gum Nebula and its environment

    Get PDF
    The Gum Nebula is 36 degree wide shell-like emission nebula at a distance of only 450 pc. It has been hypothesised to be an old supernova remnant, fossil HII region, wind-blown bubble, or combination of multiple objects. Here we investigate the magneto-ionic properties of the nebula using data from recent surveys: radio-continuum data from the NRAO VLA and S-band Parkes All Sky Surveys, and H-alpha data from the Southern H-Alpha Sky Survey Atlas. We model the upper part of the nebula as a spherical shell of ionised gas expanding into the ambient medium. We perform a maximum-likelihood Markov chain Monte-Carlo fit to the NVSS rotation measure data, using the H-halpha data to constrain average electron density in the shell nen_e. Assuming a latitudinal background gradient in RM we find ne=1.3−0.4+0.4cm−3n_e=1.3^{+0.4}_{-0.4} {\rm cm}^{-3}, angular radius ϕouter=22.7−0.1+0.1deg\phi_{\rm outer}=22.7^{+0.1}_{-0.1} {\rm deg}, shell thickness dr=18.5−1.4+1.5pcdr=18.5^{+1.5}_{-1.4} {\rm pc}, ambient magnetic field strength B0=3.9−2.2+4.9ÎŒGB_0=3.9^{+4.9}_{-2.2} \mu{\rm G} and warm gas filling factor f=0.3−0.1+0.3f=0.3^{+0.3}_{-0.1}. We constrain the local, small-scale (~260 pc) pitch-angle of the ordered Galactic magnetic field to +7∘â‰Č℘â‰Č+44∘+7^{\circ}\lesssim\wp\lesssim+44^{\circ}, which represents a significant deviation from the median field orientation on kiloparsec scales (~-7.2∘^{\circ}). The moderate compression factor X=6.0\,^{+5.1}_{-2.5} at the edge of the H-alpha shell implies that the 'old supernova remnant' origin is unlikely. Our results support a model of the nebula as a HII region around a wind-blown bubble. Analysis of depolarisation in 2.3 GHz S-PASS data is consistent with this hypothesis and our best-fitting values agree well with previous studies of interstellar bubbles.Comment: 33 pages, 16 figures. Accepted by The Astrophysical Journa

    Modeling dislocation sources and size effects at initial yield in continuum plasticity

    Get PDF
    Size effects at initial yield (prior to stage II) of idealized micron-sized specimens are modeled within a continuum model of plasticity. Two different aspects are considered: specification of a density of dislocation sources that represent the emission of dislocation dipoles, and the presence of an initial, spatially inhomogeneous excess dislocation content. Discreteness of the source distribution appears to lead to a stochastic response in stress-strain curves, with the stochasticity diminishing as the number of sources increases. Variability in stress-strain response due to variations of source distribution is also shown. These size effects at initial yield are inferred to be due to physical length scales in dislocation mobility and the discrete description of sources that induce internal-stress-related effects, and not due to length-scale effects in the mean-field strain-hardening response (as represented through a constitutive equation)

    Envelope Structure of Starless Core L694-2 Derived from a Near-Infrared Extinction Map

    Full text link
    We present a near-infrared extinction study of the dark globule L694-2, a starless core that shows strong evidence for inward motions in molecular line profiles. The J,H, and K band data were taken using the European Southern Observatory New Technology Telescope. The best fit simple spherical power law model has index p=2.6 +/- 0.2, over the 0.036--0.1 pc range in radius sampled in extinction. This power law slope is steeper than the value of p=2 for a singular isothermal sphere, the initial condition of the inside-out model for protostellar collapse. Including an additional extinction component along the line of sight further steepens the inferred profile. Fitting a Bonnor-Ebert sphere results in a super-critical value of the dimensionless radius xi_max=25 +/- 3. The unstable configuration of material may be related to the observed inward motions. The Bonnor-Ebert model matches the shape of the observed profile, but significantly underestimates the amount of extinction (by a factor of ~4). This discrepancy in normalization has also been found for the nearby protostellar core B335 (Harvey et al. 2001). A cylindrical density model with scale height H=0.0164+/- 0.002 pc viewed at a small inclination to the cylinder axis provides an equally good radial profile as a power law model, and reproduces the asymmetry of the core remarkably well. In addition, this model provides a basis for understanding the discrepancy in the normalization of the Bonnor-Ebert model, namely that L694-2 has prolate structure, with the full extent (mass) of the core being missed by assuming symmetry between the profiles in the plane of the sky and along the line-of-sight. If the core is sufficiently magnetized then fragmentation may be avoided, and later evolution might produce a protostar similar to B335.Comment: 38 pages, 7 figures, accepted to Astrophysical Journa

    The Role of the Magnetic Field in the Interstellar Medium of the Post-Starburst Dwarf Irregular Galaxy NGC 1569

    Full text link
    (abridged) NGC 1569 is a nearby dwarf irregular galaxy which underwent an intense burst of star formation 10 to 40 Myr ago. We present observations that reach surface brightnesses two to eighty times fainter than previous radio continuum observations and the first radio continuum polarization observations. These observations allow us to probe the relationship of the magnetic field of NGC 1569 to the rest of its interstellar medium. We confirm the presence of an extended radio continuum halo at 20 cm and see for the first time the radio continuum feature associated with the western Halpha arm at wavelengths shorter than 20cm. The spectral index trends in this galaxy support the theory that there is a convective wind at work in this galaxy. We derive a total magnetic field strength of 38 microG in the central regions and 10-15 microG in the halo. The magnetic field is largely random in the center of the galaxy; the uniform field is ~3-9 microG and is strongest in the halo. We find that the magnetic pressure is the same order of magnitude but, in general, a factor of a few less than the other components of the interstellar medium in this galaxy. The uniform magnetic field in NGC 1569 is closely associated with the Halpha bubbles and filaments. We suggest that a supernova-driven dynamo may be operating in this galaxy. The outflow of hot gas from NGC 1569 is clearly shaping the magnetic field, but the magnetic field in turn may be aiding the outflow by channeling gas out of the disk of the galaxy. Dwarf galaxies with extended radio continuum halos like that of NGC 1569 may play an important role in magnetizing the intergalactic medium.Comment: ApJ accepted. 56 pages, 14 figures (low resolution), 8 tables. Version with high resolution figures at http://www.astro.virginia.edu/~aak8t/data/n1569/ms.pd

    Phase-slip induced dissipation in an atomic Bose-Hubbard system

    Full text link
    Phase slips play a primary role in dissipation across a wide spectrum of bosonic systems, from determining the critical velocity of superfluid helium to generating resistance in thin superconducting wires. This subject has also inspired much technological interest, largely motivated by applications involving nanoscale superconducting circuit elements, e.g., standards based on quantum phase-slip junctions. While phase slips caused by thermal fluctuations at high temperatures are well understood, controversy remains over the role of phase slips in small-scale superconductors. In solids, problems such as uncontrolled noise sources and disorder complicate the study and application of phase slips. Here we show that phase slips can lead to dissipation for a clean and well-characterized Bose-Hubbard (BH) system by experimentally studying transport using ultra-cold atoms trapped in an optical lattice. In contrast to previous work, we explore a low velocity regime described by the 3D BH model which is not affected by instabilities, and we measure the effect of temperature on the dissipation strength. We show that the damping rate of atomic motion-the analogue of electrical resistance in a solid-in the confining parabolic potential fits well to a model that includes finite damping at zero temperature. The low-temperature behaviour is consistent with the theory of quantum tunnelling of phase slips, while at higher temperatures a cross-over consistent with the transition to thermal activation of phase slips is evident. Motion-induced features reminiscent of vortices and vortex rings associated with phase slips are also observed in time-of-flight imaging.Comment: published in Nature 453, 76 (2008

    Shock-induced mixing of a light-gas cylinder

    Get PDF
    Experiments have been carried out to quantify the mixing induced by the interaction of a weak shock wave with a cylindrical volume of a gas (helium) that is lighter than its surroundings (air). In these experiments a round laminar jet was used to produce the light-gas cylinder, and planar laser-induced fluorescence (PLIF), utilizing a fluorescent tracer (biacetyl) mixed with the helium, was used to visualize the flow. These techniques provide a higher quality of flow visualization than that obtained in previous investigations. In addition, the PLIF technique could be used for the measurement of species concentration. The distortion of the helium cylinder produced by the passing shock wave was found to be similar to that displayed by images from previous experimental and computational investigations. The downstream displacement of several points on the boundary of the light-gas cylinder are measured and agree reasonably well with the results of earlier experimental and theoretical studies as well. Because the mixing process causes the helium originally contained within the cylinder to be dispersed into the surrounding air, the PLIF image area inside the contour at one half the maximum concentration of the fluorescent tracer decreases as the two gases mixed. The change in this area is used as a measure of the mixing rate, and it is found that the time rate of change of this area divided by the area of the initial jet is approximately - 0.7 X 10^3 S^(-1)
    • 

    corecore