325 research outputs found

    Unified architecture of mobile ad hoc network security (MANS) system

    Get PDF
    In this dissertation, a unified architecture of Mobile Ad-hoc Network Security (MANS) system is proposed, under which IDS agent, authentication, recovery policy and other policies can be defined formally and explicitly, and are enforced by a uniform architecture. A new authentication model for high-value transactions in cluster-based MANET is also designed in MANS system. This model is motivated by previous works but try to use their beauties and avoid their shortcomings, by using threshold sharing of the certificate signing key within each cluster to distribute the certificate services, and using certificate chain and certificate repository to achieve better scalability, less overhead and better security performance. An Intrusion Detection System is installed in every node, which is responsible for colleting local data from its host node and neighbor nodes within its communication range, pro-processing raw data and periodically broadcasting to its neighborhood, classifying normal or abnormal based on pro-processed data from its host node and neighbor nodes. Security recovery policy in ad hoc networks is the procedure of making a global decision according to messages received from distributed IDS and restore to operational health the whole system if any user or host that conducts the inappropriate, incorrect, or anomalous activities that threaten the connectivity or reliability of the networks and the authenticity of the data traffic in the networks. Finally, quantitative risk assessment model is proposed to numerically evaluate MANS security

    Biometric Based Intrusion Detection System using Dempster-Shafer Theory for Mobile Ad hoc Network Security

    Get PDF
    In wireless mobile ad hoc network, mainly, two approaches are followed to protect the security such as prevention-based approaches and detection-based approaches. A Mobile Ad hoc Network (MANET) is a collection of autonomous wireless mobile nodes forming temporary network to interchange data (data packets) without using any fixed topology or centralized administration. In this dynamic network, each node changes its geographical position and acts as a router for forwarding packets to the other node. Current MANETs are basically vulnerable to different types of attacks. The multimodal biometric technology gives possible resolves for continuous user authentication and vulnerability in high security mobile ad hoc networks (MANETs). Dempster’s rule for combination gives a numerical method for combining multiple pieces of data from unreliable observers. This paper studies biometric authentication and intrusion detection system with data fusion using Dempster–Shafer theory in such MANETs. Multimodal biometric technologies are arrayed to work with intrusion detection to improve the limitations of unimodal biometric technique

    MANET Mining: Mining Association Rules

    Get PDF

    Two-tier Intrusion Detection System for Mobile Ad Hoc Networks

    Get PDF
    Nowadays, a commonly used wireless network (i.e. Wi-Fi) operates with the aid of a fixed infrastructure (i.e. an access point) to facilitate communication between nodes when they roam from one location to another. The need for such a fixed supporting infrastructure limits the adaptability of the wireless network, especially in situations where the deployment of such an infrastructure is impractical. In addition, Wi-Fi limits nodes' communication as it only provides facility for mobile nodes to send and receive information, but not reroute the information across the network. Recent advancements in computer network introduced a new wireless network, known as a Mobile Ad Hoc Network (MANET), to overcome these limitations. MANET has a set of unique characteristics that make it different from other kind of wireless networks. Often referred as a peer to peer network, such a network does not have any fixed topology, thus nodes are free to roam anywhere, and could join or leave the network anytime they desire. Its ability to be setup without the need of any infrastructure is very useful, especially in geographically constrained environments such as in a military battlefield or a disaster relief operation. In addition, through its multi hop routing facility, each node could function as a router, thus communication between nodes could be made available without the need of a supporting fixed router or an access point. However, these handy facilities come with big challenges, especially in dealing with the security issues. This research aims to address MANET security issues by proposing a novel intrusion detection system that could be used to complement existing prevention mechanisms that have been proposed to secure such a network. A comprehensive analysis of attacks and the existing security measures proved that there is a need for an Intrusion Detection System (IDS) to protect MANETs against security threats. The analysis also suggested that the existing IDS proposed for MANET are not immune against a colluding blackmail attack due to the nature of such a network that comprises autonomous and anonymous nodes. The IDS architecture as proposed in this study utilises trust relationships between nodes to overcome this nodes' anonymity issue. Through a friendship mechanism, the problems of false accusations and false alarms caused by blackmail attackers in global detection and response mechanisms could be eliminated. The applicability of the friendship concept as well as other proposed mechanisms to solve MANET IDS related issues have been validated through a set of simulation experiments. Several MANET settings, which differ from each other based on the network's density level, the number of initial trusted friends owned by each node, and the duration of the simulation times, have been used to study the effects of such factors towards the overall performance of the proposed IDS framework. The results obtained from the experiments proved that the proposed concepts are capable to at least minimise i f not fully eliminate the problem currently faced in MANET IDS

    BLACK HOLE ATTACK IN AODV & FRIEND FEATURES UNIQUE EXTRACTION TO DESIGN DETECTION ENGINE FOR INTRUSION DETECTION SYSTEM IN MOBILE ADHOC NETWORK

    Get PDF
    Ad-hoc network is a collection of nodes that are capable to form dynamically a temporary network without the support of any centralized fixed infrastructure. Since there is no central controller to determine the reliable & secure communication paths in Mobile Adhoc Network, each node in the ad hoc network has to rely on each other in order to forward packets, thus highly cooperative nodes are required to ensure that the initiated data transmission process does not fail. In a mobile ad hoc network (MANET) where security is a crucial issue and they are forced to rely on the neighbor node, trust plays an important role that could improve the number of successful data transmission. Larger the number of trusted nodes, higher successful data communication process rates could be expected. In this paper, Black Hole attack is applied in the network, statistics are collected to design intrusion detection engine for MANET Intrusion Detection System (IDS). Feature extraction and rule inductions are applied to find out the accuracy of detection engine by using support vector machine. In this paper True Positive generated by the detection engine is very high and this is a novel approach in the area of Mobile Adhoc Intrusion detection system

    TP-DS: A Heuristic Approach for Traffic Pattern Discovery System in MANET’s

    Get PDF
    As mobile ad hoc network (MANET) systems research has matured and several testbeds have been built to study MANETs, research has focused on developing new MANET applications such as collaborative games, collaborative computing, messaging systems, distributed security schemes, MANET middleware, peer-to-peer file sharing systems, voting systems, resource management and discovery, vehicular computing and collaborative education systems. Many techniques are proposed to enhance the anonymous communication in case of the mobile ad hoc networks (MANETs). However, MANETs are vulnerable under certain circumstances like passive attacks and traffic analysis attacks. Traffic analysis problem expose some of the methods and attacks that could infer MANETs are still weak under the passive attacks. In this Research, proposed ‘Traffic pattern Discovery System in MANET’s, aheuristic approach(TP-DS) , enables a passive global adversary to accurately infer the traffic pattern in an anonymous MANET without compromising any node. TP-DS works well on existing on-demand anonymous MANET routing protocols to determine the source node, destination node and the end-to-end communication path. Detailed simulations show that TP-DS can infer the hidden traffic pattern with accuracy as high than the TP-DS and gives the result with accuracy of 95%. DOI: 10.17762/ijritcc2321-8169.150310
    • …
    corecore