315 research outputs found

    A Scalable and Provably Secure Hash-Based RFID Protocol

    Get PDF
    The biggest challenge for RFID technology is to provide benefits without threatening the privacy of consumers. Many solutions have been suggested but almost as many ways have been found to break them. An approach by Ohkubo, Suzuki and Kinoshita using an internal refreshment mechanism seems to protect privacy well but is not scalable. We introduce a specific time-memory trade-off that removes the scalability issue of this scheme. Additionally we prove that the system truly offers privacy and even forward privacy. Our third contribution is an extension of the scheme which offers a secure communication channel between RFID tags and their owner using building blocks that are already available on the tag. Finally we give a typical example of use of our system and show its feasibility by calculating all the parameters

    Cryptanalysis of two mutual authentication protocols for low-cost RFID

    Full text link
    Radio Frequency Identification (RFID) is appearing as a favorite technology for automated identification, which can be widely applied to many applications such as e-passport, supply chain management and ticketing. However, researchers have found many security and privacy problems along RFID technology. In recent years, many researchers are interested in RFID authentication protocols and their security flaws. In this paper, we analyze two of the newest RFID authentication protocols which proposed by Fu et al. and Li et al. from several security viewpoints. We present different attacks such as desynchronization attack and privacy analysis over these protocols.Comment: 17 pages, 2 figures, 1 table, International Journal of Distributed and Parallel system

    Security of two recent constant-round password authenticated group key exchange schemes

    Get PDF
    When humans interact with machines in their daily networks, it is important that security of the communications is offered, and where the involved shared secrets used to achieve this are easily remembered by humans. Password-based authenticated group key exchange (PAGKE) schemes allow group users to share a session key based on a human-memorizable password. In this paper, we consider two PAGKE schemes that build on the seminal scheme of Burmester and Desmedt. Weshow an undetectable online dictionary attack on the first scheme, and exploit the partnering definition to break the key indistinguishability of the second scheme

    AnonPri: A Secure Anonymous Private Authentication Protocol for RFID Systems

    Get PDF
    Privacy preservation in RFID systems is a very important issue in modern day world. Privacy activists have been worried about the invasion of user privacy while using various RFID systems and services. Hence, significant efforts have been made to design RFID systems that preserve users\u27 privacy. Majority of the privacy preserving protocols for RFID systems require the reader to search all tags in the system in order to identify a single RFID tag which not efficient for large scale systems. In order to achieve high-speed authentication in large-scale RFID systems, researchers propose tree-based approaches, in which any pair of tags share a number of key components. Another technique is to perform group-based authentication that improves the tradeoff between scalability and privacy by dividing the tags into a number of groups. This novel authentication scheme ensures privacy of the tags. However, the level of privacy provided by the scheme decreases as more and more tags are compromised. To address this issue, in this paper, we propose a group based anonymous private authentication protocol (AnonPri) that provides higher level of privacy than the above mentioned group based scheme and achieves better efficiency (in terms of providing privacy) than the approaches that prompt the reader to perform an exhaustive search. Our protocol guarantees that the adversary cannot link the tag responses even if she can learn the identifier of the tags. Our evaluation results demonstrates that the level of privacy provided by AnonPri is higher than that of the group based authentication technique

    AnonPri: A Secure Anonymous Private Authentication Protocol for RFID Systems

    Get PDF
    Privacy preservation in RFID systems is a very important issue in modern day world. Privacy activists have been worried about the invasion of user privacy while using various RFID systems and services. Hence, significant efforts have been made to design RFID systems that preserve users\u27 privacy. Majority of the privacy preserving protocols for RFID systems require the reader to search all tags in the system in order to identify a single RFID tag which not efficient for large scale systems. In order to achieve high-speed authentication in large-scale RFID systems, researchers propose tree-based approaches, in which any pair of tags share a number of key components. Another technique is to perform group-based authentication that improves the tradeoff between scalability and privacy by dividing the tags into a number of groups. This novel authentication scheme ensures privacy of the tags. However, the level of privacy provided by the scheme decreases as more and more tags are compromised. To address this issue, in this paper, we propose a group based anonymous private authentication protocol (AnonPri) that provides higher level of privacy than the above mentioned group based scheme and achieves better efficiency (in terms of providing privacy) than the approaches that prompt the reader to perform an exhaustive search. Our protocol guarantees that the adversary cannot link the tag responses even if she can learn the identifier of the tags. Our evaluation results demonstrates that the level of privacy provided by AnonPri is higher than that of the group based authentication technique

    Two Rounds RFID Grouping-Proof Protocol

    Get PDF

    A Privacy Preserving Framework for RFID Based Healthcare Systems

    Get PDF
    RFID (Radio Frequency IDentification) is anticipated to be a core technology that will be used in many practical applications of our life in near future. It has received considerable attention within the healthcare for almost a decade now. The technology’s promise to efficiently track hospital supplies, medical equipment, medications and patients is an attractive proposition to the healthcare industry. However, the prospect of wide spread use of RFID tags in the healthcare area has also triggered discussions regarding privacy, particularly because RFID data in transit may easily be intercepted and can be send to track its user (owner). In a nutshell, this technology has not really seen its true potential in healthcare industry since privacy concerns raised by the tag bearers are not properly addressed by existing identification techniques. There are two major types of privacy preservation techniques that are required in an RFID based healthcare system—(1) a privacy preserving authentication protocol is required while sensing RFID tags for different identification and monitoring purposes, and (2) a privacy preserving access control mechanism is required to restrict unauthorized access of private information while providing healthcare services using the tag ID. In this paper, we propose a framework (PriSens-HSAC) that makes an effort to address the above mentioned two privacy issues. To the best of our knowledge, it is the first framework to provide increased privacy in RFID based healthcare systems, using RFID authentication along with access control technique
    • …
    corecore