763 research outputs found

    Learning Fast and Slow: PROPEDEUTICA for Real-time Malware Detection

    Full text link
    In this paper, we introduce and evaluate PROPEDEUTICA, a novel methodology and framework for efficient and effective real-time malware detection, leveraging the best of conventional machine learning (ML) and deep learning (DL) algorithms. In PROPEDEUTICA, all software processes in the system start execution subjected to a conventional ML detector for fast classification. If a piece of software receives a borderline classification, it is subjected to further analysis via more performance expensive and more accurate DL methods, via our newly proposed DL algorithm DEEPMALWARE. Further, we introduce delays to the execution of software subjected to deep learning analysis as a way to "buy time" for DL analysis and to rate-limit the impact of possible malware in the system. We evaluated PROPEDEUTICA with a set of 9,115 malware samples and 877 commonly used benign software samples from various categories for the Windows OS. Our results show that the false positive rate for conventional ML methods can reach 20%, and for modern DL methods it is usually below 6%. However, the classification time for DL can be 100X longer than conventional ML methods. PROPEDEUTICA improved the detection F1-score from 77.54% (conventional ML method) to 90.25%, and reduced the detection time by 54.86%. Further, the percentage of software subjected to DL analysis was approximately 40% on average. Further, the application of delays in software subjected to ML reduced the detection time by approximately 10%. Finally, we found and discussed a discrepancy between the detection accuracy offline (analysis after all traces are collected) and on-the-fly (analysis in tandem with trace collection). Our insights show that conventional ML and modern DL-based malware detectors in isolation cannot meet the needs of efficient and effective malware detection: high accuracy, low false positive rate, and short classification time.Comment: 17 pages, 7 figure

    Artificial intelligence in the cyber domain: Offense and defense

    Get PDF
    Artificial intelligence techniques have grown rapidly in recent years, and their applications in practice can be seen in many fields, ranging from facial recognition to image analysis. In the cybersecurity domain, AI-based techniques can provide better cyber defense tools and help adversaries improve methods of attack. However, malicious actors are aware of the new prospects too and will probably attempt to use them for nefarious purposes. This survey paper aims at providing an overview of how artificial intelligence can be used in the context of cybersecurity in both offense and defense.Web of Science123art. no. 41

    Malware Detection in Internet of Things (IoT) Devices Using Deep Learning

    Get PDF
    Internet of Things (IoT) devices usage is increasing exponentially with the spread of the internet. With the increasing capacity of data on IoT devices, these devices are becoming venerable to malware attacks; therefore, malware detection becomes an important issue in IoT devices. An effective, reliable, and time-efficient mechanism is required for the identification of sophisticated malware. Researchers have proposed multiple methods for malware detection in recent years, however, accurate detection remains a challenge. We propose a deep learning-based ensemble classification method for the detection of malware in IoT devices. It uses a three steps approach; in the first step, data is preprocessed using scaling, normalization, and de-noising, whereas in the second step, features are selected and one hot encoding is applied followed by the ensemble classifier based on CNN and LSTM outputs for detection of malware. We have compared results with the state-of-the-art methods and our proposed method outperforms the existing methods on standard datasets with an average accuracy of 99.5%.publishedVersio

    Deep Learning Methods for Malware and Intrusion Detection: A Systematic Literature Review

    Get PDF
    Android and Windows are the predominant operating systems used in mobile environment and personal computers and it is expected that their use will rise during the next decade. Malware is one of the main threats faced by these platforms as well as Internet of Things (IoT) environment and the web. With time, these threats are becoming more and more sophisticated and detecting them using traditional machine learning techniques is a hard task. Several research studies have shown that deep learning methods achieve better accuracy comparatively and can learn to efficiently detect and classify new malware samples. In this paper, we present a systematic literature review of the recent studies that focused on intrusion and malware detection and their classification in various environments using deep learning techniques. We searched five well-known digital libraries and collected a total of 107 papers that were published in scholarly journals or preprints. We carefully read the selected literature and critically analyze it to find out which types of threats and what platform the researchers are targeting and how accurately the deep learning-based systems can detect new security threats. This survey will have a positive impact on the learning capabilities of beginners who are interested in starting their research in the area of malware detection using deep learning methods. From the detailed critical analysis, it is identified that CNN, LSTM, DBN, and autoencoders are the most frequently used deep learning methods that have effectively been used in various application scenarios

    MDFRCNN: Malware Detection using Faster Region Proposals Convolution Neural Network

    Get PDF
    Technological advancement of smart devices has opened up a new trend: Internet of Everything (IoE), where all devices are connected to the web. Large scale networking benefits the community by increasing connectivity and giving control of physical devices. On the other hand, there exists an increased ‘Threat’ of an ‘Attack’. Attackers are targeting these devices, as it may provide an easier ‘backdoor entry to the users’ network’.MALicious softWARE (MalWare) is a major threat to user security. Fast and accurate detection of malware attacks are the sine qua non of IoE, where large scale networking is involved. The paper proposes use of a visualization technique where the disassembled malware code is converted into gray images, as well as use of Image Similarity based Statistical Parameters (ISSP) such as Normalized Cross correlation (NCC), Average difference (AD), Maximum difference (MaxD), Singular Structural Similarity Index Module (SSIM), Laplacian Mean Square Error (LMSE), MSE and PSNR. A vector consisting of gray image with statistical parameters is trained using a Faster Region proposals Convolution Neural Network (F-RCNN) classifier. The experiment results are promising as the proposed method includes ISSP with F-RCNN training. Overall training time of learning the semantics of higher-level malicious behaviors is less. Identification of malware (testing phase) is also performed in less time. The fusion of image and statistical parameter enhances system performance with greater accuracy. The benchmark database from Microsoft Malware Classification challenge has been used to analyze system performance, which is available on the Kaggle website. An overall average classification accuracy of 98.12% is achieved by the proposed method

    Enhancing Intrusion Detection Systems with a Hybrid Deep Learning Model and Optimized Feature Composition

    Get PDF
    Systems for detecting intrusions (IDS) are essential for protecting network infrastructures from hostile activity. Advanced methods are required since traditional IDS techniques frequently fail to properly identify sophisticated and developing assaults. In this article, we suggest a novel method for improving IDS performance through the use of a hybrid deep learning model and feature composition optimization. RNN and CNN has strengths that the proposed hybrid deep learning model leverages to efficiently capture both spatial and temporal correlations in network traffic data. The model can extract useful features from unprocessed network packets using CNNs and RNNs, giving a thorough picture of network behaviour. To increase the IDS's ability to discriminate, we also offer feature optimization strategies. We uncover the most pertinent and instructive features that support precise intrusion detection through a methodical feature selection and engineering process. In order to reduce the computational load and improve the model's efficiency without compromising detection accuracy, we also use dimensionality reduction approaches. We carried out extensive experiments using a benchmark dataset that is frequently utilized in intrusion detection research to assess the suggested approach. The outcomes show that the hybrid deep learning model performs better than conventional IDS methods, obtaining noticeably greater detection rates and lower false positive rates. The performance of model is further improved by the optimized feature composition, which offers a more accurate depiction of network traffic patterns

    Anomaly detection with machine learning for automotive cyber-physical systems

    Get PDF
    2022 Spring.Includes bibliographical references.Today's automotive systems are evolving at a rapid pace and there has been a seismic shift in automotive technology in the past few years. Automakers are racing to redefine the automobile as a fully autonomous and connected system. As a result, new technologies such as advanced driver assistance systems (ADAS), vehicle-to-vehicle (V2V), 5G vehicle to infrastructure (V2I), and vehicle to everything (V2X), etc. have emerged in recent years. These advances have resulted in increased responsibilities for the electronic control units (ECUs) in the vehicles, requiring a more sophisticated in-vehicle network to address the growing communication needs of ECUs with each other and external subsystems. This in turn has transformed modern vehicles into a complex distributed cyber-physical system. The ever-growing connectivity to external systems in such vehicles is introducing new challenges, related to the increasing vulnerability of such vehicles to various cyber-attacks. A malicious actor can use various access points in a vehicle, e.g., Bluetooth and USB ports, telematic systems, and OBD-II ports, to gain unauthorized access to the in-vehicle network. These access points are used to gain access to the network from the vehicle's attack surface. After gaining access to the in-vehicle network through an attack surface, a malicious actor can inject or alter messages on the network to try to take control of the vehicle. Traditional security mechanisms such as firewalls only detect simple attacks as they do not have the ability to detect more complex attacks. With the increasing complexity of vehicles, the attack surface increases, paving the way for more complex and novel attacks in the future. Thus, there is a need for an advanced attack detection solution that can actively monitor the in-vehicle network and detect complex cyber-attacks. One of the many approaches to achieve this is by using an intrusion detection system (IDS). Many state-of-the-art IDS employ machine learning algorithms to detect cyber-attacks for its ability to detect both previously observed as well as novel attack patterns. Moreover, the large availability of in-vehicle network data and increasing computational power of the ECUs to handle emerging complex automotive tasks facilitates the use of machine learning models. Therefore, due to its large spectrum of attack coverage and ability to detect complex attack patterns, we adopt and propose two novel machine learning based IDS frameworks (LATTE and TENET) for in-vehicle network anomaly detection. Our proposed LATTE framework uses sequence models, such as LSTMs, in an unsupervised setting to learn the normal system behavior. LATTE leverages the learned information at runtime to detect anomalies by observing for any deviations from the learned normal behavior. Our proposed LATTE framework aims to maximize the anomaly detection accuracy, precision, and recall while minimizing the false-positive rate. The increased complexity of automotive systems has resulted in very long term dependencies between messages which cannot be effectively captured by LSTMs. Hence to overcome this problem, we proposed a novel IDS framework called TENET. TENET employs a novel convolutional neural attention (TCNA) based architecture to effectively learn very-long term dependencies between messages in an in-vehicle network during the training phase and leverage the learned information in combination with a decision tree classifier to detect anomalous messages. Our work aims to efficiently detect a multitude of attacks in the in-vehicle network with low memory and computational overhead on the ECU

    NetSec: Real-time and Scalable Malware Traffic Detection within IoT Networks

    Get PDF
    Detecting malicious network traffic in real time has become a crucial requirement at smart communities for elderly care and medical facilities with the prevalence of Internet-of-things (IoT) devices. Existing machine learning based solutions for network traffic malware detection often fail to scale with the exponential increase of IoT devices at the facility and to detect malicious traffic with desirable low latency. In this paper we seek to fill the gap by designing a scalable end-to-end network traffic analyzing system that permits real-time malware detection. By leveraging distributed systems such as Apache Kafka and Apache Spark, the system has demonstrated scalable performance as the number of IoT devices grow. Using Intel’s oneAPI software stack for both machine learning and deep learning models, the model inference speed is boosted by three-fold
    • …
    corecore