11 research outputs found

    Técnicas de compresión de imágenes hiperespectrales sobre hardware reconfigurable

    Get PDF
    Tesis de la Universidad Complutense de Madrid, Facultad de Informática, leída el 18-12-2020Sensors are nowadays in all aspects of human life. When possible, sensors are used remotely. This is less intrusive, avoids interferces in the measuring process, and more convenient for the scientist. One of the most recurrent concerns in the last decades has been sustainability of the planet, and how the changes it is facing can be monitored. Remote sensing of the earth has seen an explosion in activity, with satellites now being launched on a weekly basis to perform remote analysis of the earth, and planes surveying vast areas for closer analysis...Los sensores aparecen hoy en día en todos los aspectos de nuestra vida. Cuando es posible, de manera remota. Esto es menos intrusivo, evita interferencias en el proceso de medida, y además facilita el trabajo científico. Una de las preocupaciones recurrentes en las últimas décadas ha sido la sotenibilidad del planeta, y cómo menitoirzar los cambios a los que se enfrenta. Los estudios remotos de la tierra han visto un gran crecimiento, con satélites lanzados semanalmente para analizar la superficie, y aviones sobrevolando grades áreas para análisis más precisos...Fac. de InformáticaTRUEunpu

    New Design Techniques for Dynamic Reconfigurable Architectures

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Model-Based Design for High-Performance Signal Processing Applications

    Get PDF
    Developing high-performance signal processing applications requires not only effective signal processing algorithms but also efficient software design methods that can take full advantage of the available processing resources. An increasingly important type of hardware platform for high-performance signal processing is a multicore central processing unit (CPU) combined with a graphics processing unit (GPU) accelerator. Efficiently coordinating computations on both the host (CPU) and device (GPU), and managing host-device data transfers are critical to utilizing CPU-GPU platforms effectively. However, such coordination is challenging for system designers, given the complexity of modern signal processing applications and the stringent constraints under which they must operate. Dataflow models of computation provide a useful framework for addressing this challenge. In such a modeling approach, signal processing applications are represented as directed graphs that can be viewed intuitively as high-level signal flow diagrams. The formal, high-level abstraction provided by dataflow principles provides a useful foundation to investigate model-based analysis and optimization for new challenges in design and implementation of signal processing systems. This thesis presents a new model-based design methodology and an evolution of three novel design tools. These contributions provide an automated design flow for high performance signal processing. The design flow takes high-level dataflow representations as input and systematically derives optimized implementations on CPU-GPU platforms. The proposed design flow and associated design methodology are inspired by a previously-developed application programming interface (API) called the Hybrid Task Graph Scheduler (HTGS). HTGS was developed for implementing scalable workflows for high-performance computing applications on compute nodes that have large numbers of processing cores, and that may be equipped with multiple GPUs. However, HTGS has a limitation due to its relatively loose use of dataflow techniques (or other forms of model-based design), which results in a significant designer effort being required to apply the provided APIs effectively. The main contributions of the thesis are summarized as follows: (1) Development of a companion tool to HTGS that is called the HTGS Model-based Engine (HMBE). HMBE introduces novel capabilities to automatically analyze application dataflow graphs and generate efficient schedules for these graphs through hybrid compile-time and runtime analysis. The systematic, model-based approaches provided by HMBE enable the automation of complex tasks that must be performed manually when using HTGS alone. We have demonstrated the effectiveness of HMBE and the associated model-based design methodology through extensive experiments involving two case studies: an image stitching application for large scale microscopy images, and a background subtraction application for multispectral video streams. (2) Integration of HMBE with HTGS to develop a new design tool for the design and implementation of high-performance signal processing systems. This tool, called HMBE-Integrated-HTGS (HI-HTGS), provides novel capabilities for model-based system design, memory management, and scheduling targeted to multicore platforms. HMBE takes as input a single- or multi-dimensional dataflow model of the given signal processing application. The tool then expands the dataflow model into an expanded representation that exposes more parallelism and provides significantly more detail on the interactions between different application tasks (dataflow actors). This expanded representation is derived by HI-HTGS at compile-time and provided as input to the HI-HTGS runtime system. The runtime system in turn applies the expanded representation to guide dynamic scheduling decisions throughout system execution. (3) Extension of HMBE to the class of CPU-GPU platforms motivated above. We call this new model-based design tool the CPU-GPU Model-Based Engine (CGMBE). CGMBE uses an unfolded dataflow graph representation of the application along with thread-pool-based executors, which are optimized for efficient operation on the targeted CPU-GPU platform. This approach automates complex aspects of the design and implementation process for signal processing system designers while maximizing the utilization of computational power, reducing the memory footprint for both the CPU and GPU, and facilitating experimentation for tuning performance-oriented designs

    Applications and Techniques for Fast Machine Learning in Science

    Get PDF
    In this community review report, we discuss applications and techniques for fast machine learning (ML) in science - the concept of integrating powerful ML methods into the real-time experimental data processing loop to accelerate scientific discovery. The material for the report builds on two workshops held by the Fast ML for Science community and covers three main areas: applications for fast ML across a number of scientific domains; techniques for training and implementing performant and resource-efficient ML algorithms; and computing architectures, platforms, and technologies for deploying these algorithms. We also present overlapping challenges across the multiple scientific domains where common solutions can be found. This community report is intended to give plenty of examples and inspiration for scientific discovery through integrated and accelerated ML solutions. This is followed by a high-level overview and organization of technical advances, including an abundance of pointers to source material, which can enable these breakthroughs

    Run-time reconfiguration for efficient tracking of implanted magnets with a myokinetic control interface applied to robotic hands

    Get PDF
    Tese (doutorado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Mecânica, 2021.Este trabalho introduz a aplicação de soluções de aprendizagem de máquinas visado ao problema do rastreamento de posição do antebraço baseado em sensores magnéticos. Especi ficamente, emprega-se uma estratégia baseada em dados para criar modelos matemáticos que possam traduzir as informações magnéticas medidas em entradas utilizáveis para dispositivos protéticos. Estes modelos são implementados em FPGAs usando operadores customizados de ponto flutuante para otimizar o consumo de hardware e energia, que são importantes em dispositivos embarcados. A arquitetura de hardware é proposta para ser implementada como um sistema com reconfiguração dinâmica parcial, reduzindo potencialmente a utilização de recursos e o consumo de energia da FPGA. A estratégia de dados proposta e sua implemen tação de hardware pode alcançar uma latência na ordem de microssegundos e baixo consumo de energia, o que encoraja mais pesquisas para melhorar os métodos aqui desenvolvidos para outras aplicações.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).This work introduces the application of embedded machine learning solutions for the problem of magnetic sensors-based limb tracking. Namely, we employ a data-driven strat egy to create mathematical models that can translate the magnetic information measured to usable inputs for prosthetic devices. These models are implemented in FPGAs using cus tomized floating-point operations to optimize hardware and energy consumption, which are important in wearable devices. The hardware architecture is proposed to be implemented as a dynamically partial reconfigured system, potentially reducing resource utilization and power consumption of the FPGA. The proposed data-driven strategy and its hardware implementa tion can achieve a latency in the order of microseconds and low energy consumption, which encourages further research on improving the methods herein devised for other application

    Air Force Institute of Technology Research Report 2012

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems and Engineering Management, Operational Sciences, Mathematics, Statistics and Engineering Physics

    Intelligent Circuits and Systems

    Get PDF
    ICICS-2020 is the third conference initiated by the School of Electronics and Electrical Engineering at Lovely Professional University that explored recent innovations of researchers working for the development of smart and green technologies in the fields of Energy, Electronics, Communications, Computers, and Control. ICICS provides innovators to identify new opportunities for the social and economic benefits of society.  This conference bridges the gap between academics and R&D institutions, social visionaries, and experts from all strata of society to present their ongoing research activities and foster research relations between them. It provides opportunities for the exchange of new ideas, applications, and experiences in the field of smart technologies and finding global partners for future collaboration. The ICICS-2020 was conducted in two broad categories, Intelligent Circuits & Intelligent Systems and Emerging Technologies in Electrical Engineering

    A Scalable and Dynamically Reconfigurable FPGA-Based Embedded System for Real-Time Hyperspectral Unmixing

    No full text

    Fundamentals of SARS-CoV-2 Biosensors

    Get PDF
    COVID-19 diagnostic strategies based on advanced techniques are currently essential topics of interest, with crucial roles in scientific research. This book integrates fundamental concepts and critical analyses that explore the progress of modern methods for the detection of SARS-CoV-2
    corecore