4 research outputs found

    Numerical solution of perfect plastic problems with contact: part II - numerical realization

    Get PDF
    This contribution is a continuation of our contribution denoted as PART I, where the discretized contact problem for elasto-perfectly plastic bodies was studied and suitable numerical methods were introduced. In particular, frictionless contact boundary conditions and Hencky’s material model with the von Mises criterion are considered. Here we describe some implementation details and present several numerical examples

    A parallel algorithm for deformable contact problems

    Get PDF
    In the field of nonlinear computational solid mechanics, contact problems deal with the deformation of separate bodies which interact when they come in touch. Usually, these problems are formulated as constrained minimization problems which may be solved using optimization techniques such as penalty method, Lagrange multipliers, Augmented Lagrangian method, etc. This classical approach is based on node connectivities between the contacting bodies. These connectivities are created through the construction of contact elements introduced for the discretization of the contact interface, which incorporate the contact constraints in the global weak form. These methods are well known and widely used in the resolution of contact problems in engineering and science. As parallel computing platforms are nowadays widely available, solving large engineering problems on high performance computers is a real possibility for any engineer or researcher. Due to the memory and compute power that contact problems require and consume, they are good candidates for parallel computation. Industrial and scientific realistic contact problems involve different physical domains and a large number of degrees of freedom, so algorithms designed to run efficiently in high performance computers are needed. Nevertheless, the parallelization of the numerical solution methods that arises from the classical optimization techniques and discretization approaches presents some drawbacks which must be considered. Mainly, for general contact cases where sliding occurs, the introduction of contact elements requires the update of the mesh graph in a fixed number of time steps. From the point of view of the domain decomposition method for parallel resolution of numerical problems this is a major drawback due to its computational expensiveness, since dynamic repartitioning must be done to redistribute the updated mesh graph to the different processors. On the other hand, some of the optimization techniques modify dynamically the number of degrees of freedom in the problem, by introducing Lagrange multipliers as unknowns. In this work we introduce a Dirichlet-Neumann type parallel algorithm for the numerical solution of nonlinear frictional contact problems, putting a strong focus on its computational implementation. Among its main characteristics it can be highlighted that there is no need to update the mesh graph during the simulation, as no contact elements are used. Also, no additional degrees of freedom are introduced into the system, since no Lagrange multipliers are required. In this algorithm the bodies in contact are treated separately, in a segregated way. The coupling between the contacting bodies is performed through boundary conditions transfer at the contact zone. From a computational point of view, this feature allows to use a multi-code approach. Furthermore, the algorithm can be interpreted as a black-box method as it solves each body separately even with different computational codes. In addition, the contact algorithm proposed in this thesis can also be formulated as a general fixed-point solver for the solution of interface problems. This generalization gives us the theoretical basis to extrapolate and implement numerical techniques that were already developed and widely tested in the field of fluid-structure interaction (FSI) problems, especially those related to convergence ensurance and acceleration. We describe the parallel implementation of the proposed algorithm and analyze its parallel behaviour and performance in both validation and realistic test cases executed in HPC machines using several processors.En el ámbito de la mecánica de contacto computacional, los problemas de contacto tratan con la deformación que sufren cuerpos separados cuando interactúan entre ellos. Comunmente, estos problemas son formulados como problemas de minimización con restricciones, que pueden ser resueltos utilizando técnicas de optimización como la penalización, los multiplicadores de Lagrange, el Lagrangiano Aumentado, etc. Este enfoque clásico está basado en la conectividad de nodos entre los cuerpos, que se realiza a través de la construcción de los elementos de contacto que surgen de la discretización de la interfaz. Estos elementos incorporan las restricciones de contacto en forma débil. Debido al consumo de memoria y a los requerimientos de potencia de cálculo que los problemas de contacto requieren, resultan ser muy buenos candidatos para su paralelización computacional. Sin embargo, tanto la paralelización de los métodos numéricos que surgen de las técnicas clásicas de optimización como los distintos enfoques para su discretización, presentan algunas desventajas que deben ser consideradas. Por un lado, el principal problema aparece ya que en los casos más generales de la mecánica de contacto ocurre un deslizamiento entre cuerpos. Por este motivo, la introducción de los elementos de contacto vuelve necesaria una actualización del grafo de la malla cada cierto número de pasos de tiempo. Desde el punto de vista del método de descomposición de dominios utilizado en la resolución paralela de problemas numéricos, esto es una gran desventaja debidoa su coste computacional. En estos casos, un reparticionamiento dinámico debe ser realizado para redistribuir el grafo actualizado de la malla entre los diferentes procesadores. Por otro lado, algunas técnicas de optimización modifican dinámicamente el número de grados de libertad del problema al introducir multiplicadores de Lagrange como incógnitas. En este trabajo presentamos un algoritmo paralelo del tipo Dirichlet-Neumann para la resolución numérica de problemas de contacto no lineales con fricción, poniendo un especial énfasis en su implementación computacional. Entre sus principales características se puede destacar que no hay necesidad de actualizar el grafo de la malla durante la simulación, ya que en este algoritmo no se utilizan elementos de contacto. Adicionalmente, ningún grado de libertad extra es introducido al sistema, ya que los multiplicadores de Lagrange no son requeridos. En este algoritmo los cuerpos en contacto son tratados de forma separada, de una manera segregada. El acople entre estos cuerpos es realizado a través del intercambio de condiciones de contorno en la interfaz de contacto. Desde un punto de vista computacional, esta característica permite el uso de un enfoque multi-código. Además, este algoritmo puede ser interpretado como un método del tipo black-box ya que permite resolver cada cuerpo por separado, aún utilizando distintos códigos computacionales. Adicionalmente, el algoritmo de contacto propuesto en esta tesis puede ser formulado como un esquema de resolución de punto fijo, empleado de forma general en la solución de problemas de interfaz. Esta generalización permite extrapolar técnicas numéricas ya utilizadas en los problemas de interacción fluido-estructura e implementarlas en la mecánica de contacto, en especial aquellas relacionadas con el aseguramiento y aceleración de la convergencia. En este trabajo describimos la implementación paralela del algoritmo propuesto y analizamos su comportamiento y performance paralela tanto en casos de validación como reales, ejecutados en computadores de alta performance utilizando varios procesadores.Postprint (published version

    Advanced interface modelling for 2D shell & 3D continuum problems

    Get PDF
    This work is motivated by the need for an efficient yet accurate approach for static and dynamic contact analysis of large-scale structures which can a) capture the optimum con- tact position with a moderate number of contact elements, and b) enable across-partition adaptive contact analysis within a parallel processing environment. In addressing these two issues, a novel adaptive node-to-surface contact approach is proposed to discretise the contact boundaries and to trace the evolution of contact locations. Contact search is a demanding process that can become quite complicated for certain types of problem. In this work, an efficient and robust contact search method is proposed, which can a) locally track the master facet of a given slave node despite the appearance of highly non-smooth contact surface, including surfaces with concave/convex regions or with distinct boundaries as well as reversible normals, and b) globally reallocate the master-slave contact pairs based on the penetration state without an expensive global search, providing an effective adaptive contact approach. A dual-interface-based domain decomposition method emphasising across-partition con- tact coupling is proposed. A pair of fully decomposed node-to-surface contact element are proposed to discretise the across-partition contact boundaries. The assumption of small incremental displacements is adopted, which a) avoids the excessive coupling between the decomposed master and slave, b) reduces significantly the communication overhead, and c) facilitates a flexible across-partition adaptive analysis. This strategy is found to provide good results for a sufficiently small time- or load-step, and it also facilitates mix-dimensional contact simulation. Another interest in current thesis is the inaccuracy in non-smooth plates modelled us- ing 2D displacement-based shell elements. In this work the dominant factor causing the inaccuracy is recognised as the incompatible tangential rotations on the two sides of the in- tersection. A 3-noded coupling element is introduced to impose a continuous constraint to couple the incompatible rotations. The significance of the discontinuity in the shell-based folded structure and the effectiveness of the coupling element is demonstrated through numerical studies comparing shell-based models to high fidelity solid-based models.Open Acces

    Sur la résolution du problème de frottement tridimensionnel : Formulations et comparaisons des méthodes numériques

    Get PDF
    In this report, we review several formulations of the discrete frictional contact problemthat arises in space and time discretized mechanical systems with unilateral contact andthree-dimensional Coulomb’s friction. Most of these formulations are well–known concepts in theoptimization community, or more generally, in the mathematical programming community. Tocite a few, the discrete frictional contact problem can be formulated as variational inequalities,generalized or semi–smooth equations, second–order cone complementarity problems, or as optimizationproblems such as quadratic programming problems over second-order cones. Thanks tothese multiple formulations, various numerical methods emerge naturally for solving the problem.We review the main numerical techniques that are well-known in the literature and we also proposenew applications of methods such as the fixed point and extra-gradient methods with self-adaptivestep rules for variational inequalities or the proximal point algorithm for generalized equations.All these numerical techniques are compared over a large set of test examples using performanceprofiles. One of the main conclusion is that there is no universal solver. Nevertheless, we are ableto give some hints to choose a solver with respect to the main characteristics of the set of testsDans ce rapport, plusieurs formulations du problème discret de contact frottant qui apparaîtdans les systèmes mécaniques avec du contact unilatéral et du frottement de Coulomb, sont présentées.La plupart de ces formulations sont des objets bien connus dans la communauté de l’optimisation, etplus généralement, de la programmation mathématique. Pour en citer quelques uns, le problème decontact frottant peut être formulé comme une inégalité variationnelle, comme une équation non-régulièreou semi–lisse, comme un problème de complémentarité sur des cônes, ou encore comme des problèmesd’optimisation par exemple des problèmes quadratiques sur des cônes du second ordre. Grâce à cesmultiples formulations, de nombreuses méthodes numériques de résolutions émergent naturellement. Ondétaille dans ce rapport les principales techniques numériques bien connues dans la littérature et nousproposons aussi des nouvelles méthodes comme les méthodes de point fixe et d’extra-gradient pour lesinégalités variationnelles avec une règle d’adaptation automatique du pas, ainsi que l’application del’algorithme du point optimal pour les équations généralisées. Toutes ces techniques sont comparées surun grand ensemble de problème–tests en utilisant des profils de performance. Une des conclusions est qu’iln’existe pas de méthode universelle. Néanmoins, on peut donner des conseils pour choisir une méthodeparticulière la mieux adaptée aux caractéristiques d’un problème donné
    corecore