3,198 research outputs found

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    Evolving Ensembles with TPOT

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Data ScienceMachine learning has become popular in recent years as a solution to various problems such as fraud detection, weather prediction, improve diagnosis accuracy, and more. One of its goals is to find the model that best explains the problem. Among the several alternatives on how to accomplish that, significant attention has been laid on the matter of accuracy using stacking ensembles: the objective is to produce a more accurate prediction by combining the predictions of various estimators. This model has often been exhibiting a superior performance in contrast to its single counterparts. Because the process of choosing the best model for a given problem can be time-consuming, a necessity to automatize the machine learning process has emerged. Different tools allow this, including TPOT, a Python library that uses genetic programming to optimize the machine learning process, evolving pipelines randomly created until the best one is found, or a previously fixed maximum number of generations for the given problem is reached. Genetic programming is a field of machine learning that uses evolutionary algorithms to generate new computer programs, and it has been shown successful in quite a few applications. TPOT uses several machine learning algorithms from the Sklearn Python library. It also features some ensembles, such as Random Forest or AdaBoost. Currently, stacking ensembles are not implemented yet on TPOT, and, considering its current accuracy rates, the objective of this thesis is to implement stacking ensembles in TPOT. After we implemented stacking ensembles successfully in TPOT, we performed some experiments with different datasets and noticed that for almost all of them, TPOT has comparable performance to TPOT with stacking ensembles. Also, we observed that, when using the light dictionary version of TPOT, the results of the Stacking configuration improved for two datasets since it used weaker learners

    Distributed classifier based on genetically engineered bacterial cell cultures

    Full text link
    We describe a conceptual design of a distributed classifier formed by a population of genetically engineered microbial cells. The central idea is to create a complex classifier from a population of weak or simple classifiers. We create a master population of cells with randomized synthetic biosensor circuits that have a broad range of sensitivities towards chemical signals of interest that form the input vectors subject to classification. The randomized sensitivities are achieved by constructing a library of synthetic gene circuits with randomized control sequences (e.g. ribosome-binding sites) in the front element. The training procedure consists in re-shaping of the master population in such a way that it collectively responds to the "positive" patterns of input signals by producing above-threshold output (e.g. fluorescent signal), and below-threshold output in case of the "negative" patterns. The population re-shaping is achieved by presenting sequential examples and pruning the population using either graded selection/counterselection or by fluorescence-activated cell sorting (FACS). We demonstrate the feasibility of experimental implementation of such system computationally using a realistic model of the synthetic sensing gene circuits.Comment: 31 pages, 9 figure

    Proceedings of the 2nd Computer Science Student Workshop: Microsoft Istanbul, Turkey, April 9, 2011

    Get PDF
    • …
    corecore