819 research outputs found

    A Survey of Fault-Tolerance and Fault-Recovery Techniques in Parallel Systems

    Full text link
    Supercomputing systems today often come in the form of large numbers of commodity systems linked together into a computing cluster. These systems, like any distributed system, can have large numbers of independent hardware components cooperating or collaborating on a computation. Unfortunately, any of this vast number of components can fail at any time, resulting in potentially erroneous output. In order to improve the robustness of supercomputing applications in the presence of failures, many techniques have been developed to provide resilience to these kinds of system faults. This survey provides an overview of these various fault-tolerance techniques.Comment: 11 page

    06371 Abstracts Collection -- From Security to Dependability

    Get PDF
    From 10.09.06 to 15.09.06, the Dagstuhl Seminar 06371 ``From Security to Dependability\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Fault Tolerant Adaptive Parallel and Distributed Simulation through Functional Replication

    Full text link
    This paper presents FT-GAIA, a software-based fault-tolerant parallel and distributed simulation middleware. FT-GAIA has being designed to reliably handle Parallel And Distributed Simulation (PADS) models, which are needed to properly simulate and analyze complex systems arising in any kind of scientific or engineering field. PADS takes advantage of multiple execution units run in multicore processors, cluster of workstations or HPC systems. However, large computing systems, such as HPC systems that include hundreds of thousands of computing nodes, have to handle frequent failures of some components. To cope with this issue, FT-GAIA transparently replicates simulation entities and distributes them on multiple execution nodes. This allows the simulation to tolerate crash-failures of computing nodes. Moreover, FT-GAIA offers some protection against Byzantine failures, since interaction messages among the simulated entities are replicated as well, so that the receiving entity can identify and discard corrupted messages. Results from an analytical model and from an experimental evaluation show that FT-GAIA provides a high degree of fault tolerance, at the cost of a moderate increase in the computational load of the execution units.Comment: arXiv admin note: substantial text overlap with arXiv:1606.0731

    The Bedrock of Byzantine Fault Tolerance: A Unified Platform for BFT Protocol Design and Implementation

    Full text link
    Byzantine Fault-Tolerant (BFT) protocols have recently been extensively used by decentralized data management systems with non-trustworthy infrastructures, e.g., permissioned blockchains. BFT protocols cover a broad spectrum of design dimensions from infrastructure settings such as the communication topology, to more technical features such as commitment strategy and even fundamental social choice properties like order-fairness. The proliferation of different BFT protocols has rendered it difficult to navigate the BFT landscape, let alone determine the protocol that best meets application needs. This paper presents Bedrock, a unified platform for BFT protocols design, analysis, implementation, and experiments. Bedrock proposes a design space consisting of a set of design choices capturing the trade-offs between different design space dimensions and providing fundamentally new insights into the strengths and weaknesses of BFT protocols. Bedrock enables users to analyze and experiment with BFT protocols within the space of plausible choices, evolve current protocols to design new ones, and even uncover previously unknown protocols. Our experimental results demonstrate the capability of Bedrock to uniformly evaluate BFT protocols in new ways that were not possible before due to the diverse assumptions made by these protocols. The results validate Bedrock's ability to analyze and derive BFT protocols
    • …
    corecore