6,149 research outputs found

    Exploiting multimedia in creating and analysing multimedia Web archives

    No full text
    The data contained on the web and the social web are inherently multimedia and consist of a mixture of textual, visual and audio modalities. Community memories embodied on the web and social web contain a rich mixture of data from these modalities. In many ways, the web is the greatest resource ever created by human-kind. However, due to the dynamic and distributed nature of the web, its content changes, appears and disappears on a daily basis. Web archiving provides a way of capturing snapshots of (parts of) the web for preservation and future analysis. This paper provides an overview of techniques we have developed within the context of the EU funded ARCOMEM (ARchiving COmmunity MEMories) project to allow multimedia web content to be leveraged during the archival process and for post-archival analysis. Through a set of use cases, we explore several practical applications of multimedia analytics within the realm of web archiving, web archive analysis and multimedia data on the web in general

    Scalable Privacy-Compliant Virality Prediction on Twitter

    Get PDF
    The digital town hall of Twitter becomes a preferred medium of communication for individuals and organizations across the globe. Some of them reach audiences of millions, while others struggle to get noticed. Given the impact of social media, the question remains more relevant than ever: how to model the dynamics of attention in Twitter. Researchers around the world turn to machine learning to predict the most influential tweets and authors, navigating the volume, velocity, and variety of social big data, with many compromises. In this paper, we revisit content popularity prediction on Twitter. We argue that strict alignment of data acquisition, storage and analysis algorithms is necessary to avoid the common trade-offs between scalability, accuracy and privacy compliance. We propose a new framework for the rapid acquisition of large-scale datasets, high accuracy supervisory signal and multilanguage sentiment prediction while respecting every privacy request applicable. We then apply a novel gradient boosting framework to achieve state-of-the-art results in virality ranking, already before including tweet's visual or propagation features. Our Gradient Boosted Regression Tree is the first to offer explainable, strong ranking performance on benchmark datasets. Since the analysis focused on features available early, the model is immediately applicable to incoming tweets in 18 languages.Comment: AffCon@AAAI-19 Best Paper Award; Presented at AAAI-19 W1: Affective Content Analysi

    Mining the Demographics of Political Sentiment from Twitter Using Learning from Label Proportions

    Full text link
    Opinion mining and demographic attribute inference have many applications in social science. In this paper, we propose models to infer daily joint probabilities of multiple latent attributes from Twitter data, such as political sentiment and demographic attributes. Since it is costly and time-consuming to annotate data for traditional supervised classification, we instead propose scalable Learning from Label Proportions (LLP) models for demographic and opinion inference using U.S. Census, national and state political polls, and Cook partisan voting index as population level data. In LLP classification settings, the training data is divided into a set of unlabeled bags, where only the label distribution in of each bag is known, removing the requirement of instance-level annotations. Our proposed LLP model, Weighted Label Regularization (WLR), provides a scalable generalization of prior work on label regularization to support weights for samples inside bags, which is applicable in this setting where bags are arranged hierarchically (e.g., county-level bags are nested inside of state-level bags). We apply our model to Twitter data collected in the year leading up to the 2016 U.S. presidential election, producing estimates of the relationships among political sentiment and demographics over time and place. We find that our approach closely tracks traditional polling data stratified by demographic category, resulting in error reductions of 28-44% over baseline approaches. We also provide descriptive evaluations showing how the model may be used to estimate interactions among many variables and to identify linguistic temporal variation, capabilities which are typically not feasible using traditional polling methods

    Social media analytics: a survey of techniques, tools and platforms

    Get PDF
    This paper is written for (social science) researchers seeking to analyze the wealth of social media now available. It presents a comprehensive review of software tools for social networking media, wikis, really simple syndication feeds, blogs, newsgroups, chat and news feeds. For completeness, it also includes introductions to social media scraping, storage, data cleaning and sentiment analysis. Although principally a review, the paper also provides a methodology and a critique of social media tools. Analyzing social media, in particular Twitter feeds for sentiment analysis, has become a major research and business activity due to the availability of web-based application programming interfaces (APIs) provided by Twitter, Facebook and News services. This has led to an ‘explosion’ of data services, software tools for scraping and analysis and social media analytics platforms. It is also a research area undergoing rapid change and evolution due to commercial pressures and the potential for using social media data for computational (social science) research. Using a simple taxonomy, this paper provides a review of leading software tools and how to use them to scrape, cleanse and analyze the spectrum of social media. In addition, it discussed the requirement of an experimental computational environment for social media research and presents as an illustration the system architecture of a social media (analytics) platform built by University College London. The principal contribution of this paper is to provide an overview (including code fragments) for scientists seeking to utilize social media scraping and analytics either in their research or business. The data retrieval techniques that are presented in this paper are valid at the time of writing this paper (June 2014), but they are subject to change since social media data scraping APIs are rapidly changing

    Statistics in the Big Data era

    Get PDF
    It is estimated that about 90% of the currently available data have been produced over the last two years. Of these, only 0.5% is effectively analysed and used. However, this data can be a great wealth, the oil of 21st century, when analysed with the right approach. In this article, we illustrate some specificities of these data and the great interest that they can represent in many fields. Then we consider some challenges to statistical analysis that emerge from their analysis, suggesting some strategies
    corecore