210 research outputs found

    Coal Seam Gas: Issues for Consideration in the Illawarra Region, NSW, Australia

    Get PDF
    Coal seam gas (CSG) is a naturally occurring gas, predominantly methane (CH4) that can be used as a fuel to generate electricity. It is found within the pores and fractures of all sub-surface coal seams, typically at a depth of 300 to 1000 metres. Advances in drilling technology have made CSG extraction more economical, leading to a significant expansion in development, particularly in the eastern coal basins of Australia and parts of the US. This rapid expansion in development has created significant concern as to possible impacts on the environment, particularly issues relating to agriculture, groundwater, and water catchments. The main environmental issues relating to CSG extraction are outlined in this thesis by analysing a range of literature relating to CSG development in the Illawarra region, south of Sydney, a region that has been extensively mined over the past 150 years and is an important water catchment for the Sydney metropolitan area. In addition to discussing exploration and production techniques such as hydraulic fracturing, an analysis of the geology and hydrogeology of the Southern Coalfield is undertaken, with particular reference to the potential impacts on groundwater and water catchments. The study also reviews the legislative framework, and looks at the global and domestic economic conditions currently driving CSG development in this country. This thesis forms an important basis for understanding the current issues relating to CSG in Australia, as well as proving local context for assessing potential impacts in the Illawarra region

    The Dallol Geothermal Area, Northern Afar (Ethiopia) — An Exceptional Planetary Field Analog on Earth

    Get PDF
    The Dallol volcano and its associated hydrothermal field are located in a remote area of the northern Danakil Depression in Ethiopia, a region only recently appraised after decades of inaccessibility due to severe political instability and the absence of infrastructure. The region is notable for hosting environments at the very edge of natural physical-chemical extremities. It is surrounded by a wide, hyperarid salt plain and is one of the hottest (average annual temperatureDallol: 36–38°C) and most acidic natural system (pHDallol ≈0) on Earth. Spectacular geomorphologies and mineral deposits produced by supersaturated hydrothermal waters and brines are the result of complex interactions between active and inactive hydrothermal alteration of the bedrock, sulfuric hot springs and pools, fumaroles and geysers, and recrystallization processes driven by hydrothermal waters, degassing, and rapid evaporation. The study of planetary field analog environments plays a crucial role in characterizing the physical and chemical boundaries within which life can exist on Earth and other planets. It is essential for the definition and assessment of the conditions of habitability on other planets, including the possibility for biosignature preservation and in situ testing of technologies for life detection. The Dallol area represents an excellent Mars analog environment given that the active volcanic environment, the associated diffuse hydrothermalism and hydrothermal alteration, and the vast acidic sulfate deposits are reminiscent of past hydrothermal activity on Mars. The work presented in this paper is an overview of the Dallol volcanic area and its hydrothermal field that integrates previous literature with observations and results obtained from field surveys and monitoring coupled with sample characterization. In so doing, we highlight its exceptional potential as a planetary field analog as well as a site for future astrobiological and exploration programs

    Safety and security of cyber-physical systems

    Get PDF
    The number of embedded controllers in charge of physical systems has rapidly increased over the past years. Embedded controllers are present in every aspect of our lives, from our homes to our vehicles and factories. The complexity of these systems is also more than ever. These systems are expected to deliver many features and high performance without trading off in robustness and assurance. As systems increase in complexity, however, the cost of formally verifying their correctness and eliminating security vulnerabilities can quickly explode. On top of the unintentional bugs and problems, malicious attacks on cyber-physical systems (CPS) can also lead to adverse outcomes on physical plants. Some of the recent attacks on CPS are focused on causing physical damage to the plants or the environment. Such intruders make their way into the system using cyber exploits but then initiate actions that can destabilize and even damage the underlying (physical) systems. Given the reality mentioned above and the reliability standards of the industry, there is a need to embrace new CPS design paradigms where faults and security vulnerabilities are the norms rather than an anomaly. Such imperfections must be assumed to exist in every system and component unless it is formally verified and scanned. Faults and vulnerabilities should be safely handled and the CPS must be able to recover from them at run-time. Our goal in this work is to introduce and investigate a few designs compatible with this paradigm. The architectures and techniques proposed in this dissertation do not rely on the testing and complete system verification. Instead, they enforce safety at the highest level of the system and extend guaranteed safety from a few certified components to the entire system. These solutions are carefully curated to utilize unverified components and provide guaranteed performance
    • …
    corecore