93 research outputs found

    A satisficing bi-directional model transformation engine using mixed integer linear programming

    Get PDF
    The use of model transformation in software engineering has increased significantly during the past decade, with the ability to rapidly transform models and ensure consistency between those models being a key property of Model Driven Architecture. However, these approaches can be applied to a wide variety of different model types and some of these models and associated transformations require different semantics than those popularised by current model transformation tools. Specifically, current relational model transformation languages typically prioritise matching relation patterns in the source model over creating a target model that is compliant with its meta-model. In this paper we describe a relational model transformation engine implemented as a series of Mixed Integer Linear Programs (MILP). This engine has a key novel feature; it prioritises target model compliance with its meta-model by considering multiple interpretations of applying the transformation specification in order to ensure a correct target model is generated. In this paper the MILP transformation engine and the representations it uses are described, followed by the results of applying it to examples of varying complexity. © JOT 2011

    Extending relational model transformations to better support the verification of increasingly autonomous systems

    Get PDF
    Over the past decade the capabilities of autonomous systems have been steadily increasing. Unmanned systems are moving from systems that are predominantly remotely operated, to systems that include a basic decision making capability. This is a trend that is expected to continue with autonomous systems making decisions in increasingly complex environments, based on more abstract, higher-level missions and goals. These changes have significant implications for how these systems should be designed and engineered. Indeed, as the goals and tasks these systems are to achieve become more abstract, and the environments they operate in become more complex, are current approaches to verification and validation sufficient? Domain Specific Modelling is a key technology for the verification of autonomous systems. Verifying these systems will ultimately involve understanding a significant number of domains. This includes goals/tasks, environments, systems functions and their associated performance. Relational Model Transformations provide a means to utilise, combine and check models for consistency across these domains. In this thesis an approach that utilises relational model transformation technologies for systems verification, Systems MDD, is presented along with the results of a series of trials conducted with an existing relational model transformation language (QVT-Relations). These trials identified a number of problems with existing model transformation languages, including poorly or loosely defined semantics, differing interpretations of specifications across different tools and the lack of a guarantee that a model transformation would generate a model that was compliant with its associated meta-model. To address these problems, two related solvers were developed to assist with realising the Systems MDD approach. The first solver, MMCS, is concerned with partial model completion, where a partial model is defined as a model that does not fully conform with its associated meta-model. It identifies appropriate modifications to be made to a partial model in order to bring it into full compliance. The second solver, TMPT, is a relational model transformation engine that prioritises target models. It considers multiple interpretations of a relational transformation specification, chooses an interpretation that results in a compliant target model (if one exists) and, optionally, maximises some other attribute associated with the model. A series of experiments were conducted that applied this to common transformation problems in the published literature

    User-Oriented Methodology and Techniques of Decision Analysis and Support

    Get PDF
    This volume contains 26 papers selected from Workshop presentations. The book is divided into two sections; the first is devoted to the methodology of decision analysis and support and related theoretical developments, and the second reports on the development of tools -- algorithms, software packages -- for decision support as well as on their applications. Several major contributions on constructing user interfaces, on organizing intelligent DSS, on modifying theory and tools in response to user needs -- are included in this volume

    Theory, Software and Testing Examples in Decision Support Systems

    Get PDF
    This volume summarizes the results of a four-year cooperative contracted study "Theory, Software and Testing Examples for Decision Support Systems" conducted in Poland by four institutions: the Institute of Automatic Control, Warsaw University of Technology, the System Research Institute of the Polish Academy of Sciences, the Institute of Control and Systems Engineering, Academy of Mining and Metallurgy in Cracow, and the Institute of Informatics, University of Warsaw in cooperation with the Methodology of the Decision Analysis Project of the System and Decision Sciences Program at IIASA. This research was supported mostly by IIASA funds in Polish national currency, but also by other sources and research grants in Poland, such as the grant RP.1.02 of the Ministry of Education for research in optimization and automatic control; totally, it represents the results of a part-time work of about 30 researchers from these institutions. This volume concentrates on the theoretical and methodological advances of this cooperative study, although it describes also experiences of applications in the area of programming the development of chemical industry together with a decision support system for such purposes as well as presents short descriptions of eight software packages (prototype decision support systems, multiobjective mathematical programming packages and a pilot negotiation support system) that are available together with more detailed documentation as scientific software constituting a part of results of this study. The research on the Polish side was coordinated by Professor Andrzej P. Wierzbicki and on IIASA's side by Dr. Andrzej Lewandowski, the project leader of the Methodology of Decision Analysis; they served also as the editors of this volume

    Aspiration Based Decision Support Systems

    Get PDF
    This book focuses the methodology of decision analysis and support related to the principle of reference point optimization (developed by the editors of this volume and called also variously: aspiration-led decision support, quasi-satisfying framework of rationality, DIDAS methodology etc.). The selection principle applied for this volume was to concentrate on advances of theory and methodology, related to the focusing theme, to supplement them by experiences and methodological advances gained through wide applications and tests in one particular application area - the programming of development of industrial structures in chemical industry, and finally to give a very short description of various software products developed in the contracted study agreement

    Methodology and Software for Interactive Decision Support

    Get PDF
    These Proceedings report the scientific results of an International Workshop on "Methodology and Software for Interactive Decision Support" organized jointly by the System and Decision Sciences Program of IIASA and The National Committee for Applied Systems Analysis and Management in Bulgaria. Several other Bulgarian institutions sponsored the workshop -- The Committee for Science to the Council of Ministers, The State Committee for Research and Technology and The Bulgarian Industrial Association. The workshop was held in Albena, on the Black Sea Coast. In the first section, "Theory and Algorithms for Multiple Criteria Optimization," new theoretical developments in multiple criteria optimization are presented. In the second section, "Theory, Methodology and Software for Decision Support Systems," the principles of building decision support systems are presented as well as software tools constituting the building components of such systems. Moreover, several papers are devoted to the general methodology of building such systems or present experimental design of systems supporting certain class of decision problems. The third section addresses issues of "Applications of Decision Support Systems and Computer Implementations of Decision Support Systems." Another part of this section has a special character. Beside theoretical and methodological papers, several practical implementations of software for decision support have been presented during the workshop. These software packages varied from very experimental and illustrative implementations of some theoretical concept to well developed and documented systems being currently commercially distributed and used for solving practical problems

    Energy management for user’s thermal and power needs:A survey

    Get PDF
    The increasing world energy consumption, the diversity in energy sources, and the pressing environmental goals have made the energy supply–demand balance a major challenge. Additionally, as reducing energy costs is a crucial target in the short term, while sustainability is essential in the long term, the challenge is twofold and contains clashing goals. A more sustainable system and end-users’ behavior can be promoted by offering economic incentives to manage energy use, while saving on energy bills. In this paper, we survey the state-of-the-art in energy management systems for operation scheduling of distributed energy resources and satisfying end-user’s electrical and thermal demands. We address questions such as: how can the energy management problem be formulated? Which are the most common optimization methods and how to deal with forecast uncertainties? Quantitatively, what kind of improvements can be obtained? We provide a novel overview of concepts, models, techniques, and potential economic and emission savings to enhance energy management systems design

    Enabling flexibility through strategic management of complex engineering systems

    Get PDF
    ”Flexibility is a highly desired attribute of many systems operating in changing or uncertain conditions. It is a common theme in complex systems to identify where flexibility is generated within a system and how to model the processes needed to maintain and sustain flexibility. The key research question that is addressed is: how do we create a new definition of workforce flexibility within a human-technology-artificial intelligence environment? Workforce flexibility is the management of organizational labor capacities and capabilities in operational environments using a broad and diffuse set of tools and approaches to mitigate system imbalances caused by uncertainties or changes. We establish a baseline reference for managers to use in choosing flexibility methods for specific applications and we determine the scope and effectiveness of these traditional flexibility methods. The unique contributions of this research are: a) a new definition of workforce flexibility for a human-technology work environment versus traditional definitions; b) using a system of systems (SoS) approach to create and sustain that flexibility; and c) applying a coordinating strategy for optimal workforce flexibility within the human- technology framework. This dissertation research fills the gap of how we can model flexibility using SoS engineering to show where flexibility emerges and what strategies a manager can use to manage flexibility within this technology construct”--Abstract, page iii
    • …
    corecore