2,553 research outputs found

    A Satisfactory Power Control for 5G Self-Organizing Networks

    Full text link
    SmallCells are deployed in order to enhance the network performance by bringing the network closer to the user. However, as the number of low power nodes grows increasingly, the overall energy consumption of the SmallCells base stations cannot be ignored. A relevant amount of energy could be saved through several techniques, especially power control mechanisms. In this paper, we are concerned with energy aware self organizing networks that guarantee a satisfactory performance. We consider satisfaction equilibria, mainly the efficient satisfaction equilibrium (ESE), to ensure a target quality of service (QoS) and save energy. First, we identify conditions of existence and uniqueness of ESE under a stationary channel assumption. We fully characterize the ESE and prove that, whenever it exists, it is a solution of a linear system. Moreover, we define satisfactory Pareto optimality and show that, at the ESE, no player can increase its QoS without degrading the overall performance. Under a fast fading channel assumption, as the robust satisfaction equilibrium solution is very restrictive, we propose an alternative solution namely the long term satisfaction equilibrium, and describe how to reach this solution efficiently. Finally, in order to find satisfactory solution per all users, we propose fully distributed strategic learning schemes based on Banach-Picard, Mann and Bush Mosteller algorithms, and show through simulations their qualitative properties. fully distributed strategic learning schemes based on Banach Picard, Mann and Bush Mosteller algorithms, and show through simulations their qualitative properties

    Complex Systems Science meets 5G and IoT

    Full text link
    We propose a new paradigm for telecommunications, and develop a framework drawing on concepts from information (i.e., different metrics of complexity) and computational (i.e., agent based modeling) theory, adapted from complex system science. We proceed in a systematic fashion by dividing network complexity understanding and analysis into different layers. Modelling layer forms the foundation of the proposed framework, supporting analysis and tuning layers. The modelling layer aims at capturing the significant attributes of networks and the interactions that shape them, through the application of tools such as agent-based modelling and graph theoretical abstractions, to derive new metrics that holistically describe a network. The analysis phase completes the core functionality of the framework by linking our new metrics to the overall network performance. The tuning layer augments this core with algorithms that aim at automatically guiding networks toward desired conditions. In order to maximize the impact of our ideas, the proposed approach is rooted in relevant, near-future architectures and use cases in 5G networks, i.e., Internet of Things (IoT) and self-organizing cellular networks

    A Game Theoretic Perspective on Self-organizing Optimization for Cognitive Small Cells

    Full text link
    In this article, we investigate self-organizing optimization for cognitive small cells (CSCs), which have the ability to sense the environment, learn from historical information, make intelligent decisions, and adjust their operational parameters. By exploring the inherent features, some fundamental challenges for self-organizing optimization in CSCs are presented and discussed. Specifically, the dense and random deployment of CSCs brings about some new challenges in terms of scalability and adaptation; furthermore, the uncertain, dynamic and incomplete information constraints also impose some new challenges in terms of convergence and robustness. For providing better service to the users and improving the resource utilization, four requirements for self-organizing optimization in CSCs are presented and discussed. Following the attractive fact that the decisions in game-theoretic models are exactly coincident with those in self-organizing optimization, i.e., distributed and autonomous, we establish a framework of game-theoretic solutions for self-organizing optimization in CSCs, and propose some featured game models. Specifically, their basic models are presented, some examples are discussed and future research directions are given.Comment: 8 Pages, 8 Figures, to appear in IEEE Communications Magazin

    Application of Machine Learning in Wireless Networks: Key Techniques and Open Issues

    Full text link
    As a key technique for enabling artificial intelligence, machine learning (ML) is capable of solving complex problems without explicit programming. Motivated by its successful applications to many practical tasks like image recognition, both industry and the research community have advocated the applications of ML in wireless communication. This paper comprehensively surveys the recent advances of the applications of ML in wireless communication, which are classified as: resource management in the MAC layer, networking and mobility management in the network layer, and localization in the application layer. The applications in resource management further include power control, spectrum management, backhaul management, cache management, beamformer design and computation resource management, while ML based networking focuses on the applications in clustering, base station switching control, user association and routing. Moreover, literatures in each aspect is organized according to the adopted ML techniques. In addition, several conditions for applying ML to wireless communication are identified to help readers decide whether to use ML and which kind of ML techniques to use, and traditional approaches are also summarized together with their performance comparison with ML based approaches, based on which the motivations of surveyed literatures to adopt ML are clarified. Given the extensiveness of the research area, challenges and unresolved issues are presented to facilitate future studies, where ML based network slicing, infrastructure update to support ML based paradigms, open data sets and platforms for researchers, theoretical guidance for ML implementation and so on are discussed.Comment: 34 pages,8 figure

    A Computation Offloading Incentive Mechanism with Delay and Cost Constraints under 5G Satellite-ground IoV architecture

    Full text link
    The 5G Internet of Vehicles has become a new paradigm alongside the growing popularity and variety of computation-intensive applications with high requirements for computational resources and analysis capabilities. Existing network architectures and resource management mechanisms may not sufficiently guarantee satisfactory Quality of Experience and network efficiency, mainly suffering from coverage limitation of Road Side Units, insufficient resources, and unsatisfactory computational capabilities of onboard equipment, frequently changing network topology, and ineffective resource management schemes. To meet the demands of such applications, in this article, we first propose a novel architecture by integrating the satellite network with 5G cloud-enabled Internet of Vehicles to efficiently support seamless coverage and global resource management. A incentive mechanism based joint optimization problem of opportunistic computation offloading under delay and cost constraints is established under the aforementioned framework, in which a vehicular user can either significantly reduce the application completion time by offloading workloads to several nearby vehicles through opportunistic vehicle-to-vehicle channels while effectively controlling the cost or protect its own profit by providing compensated computing service. As the optimization problem is non-convex and NP-hard, simulated annealing based on the Markov Chain Monte Carlo as well as the metropolis algorithm is applied to solve the optimization problem, which can efficaciously obtain both high-quality and cost-effective approximations of global optimal solutions. The effectiveness of the proposed mechanism is corroborated through simulation results

    Energy Efficient User Association and Power Allocation in Millimeter Wave Based Ultra Dense Networks with Energy Harvesting Base Stations

    Full text link
    Millimeter wave (mmWave) communication technologies have recently emerged as an attractive solution to meet the exponentially increasing demand on mobile data traffic. Moreover, ultra dense networks (UDNs) combined with mmWave technology are expected to increase both energy efficiency and spectral efficiency. In this paper, user association and power allocation in mmWave based UDNs is considered with attention to load balance constraints, energy harvesting by base stations, user quality of service requirements, energy efficiency, and cross-tier interference limits. The joint user association and power optimization problem is modeled as a mixed-integer programming problem, which is then transformed into a convex optimization problem by relaxing the user association indicator and solved by Lagrangian dual decomposition. An iterative gradient user association and power allocation algorithm is proposed and shown to converge rapidly to an optimal point. The complexity of the proposed algorithm is analyzed and the effectiveness of the proposed scheme compared with existing methods is verified by simulations.Comment: to appear, IEEE Journal on Selected Areas in Communications, 201

    Machine Intelligence Techniques for Next-Generation Context-Aware Wireless Networks

    Full text link
    The next generation wireless networks (i.e. 5G and beyond), which would be extremely dynamic and complex due to the ultra-dense deployment of heterogeneous networks (HetNets), poses many critical challenges for network planning, operation, management and troubleshooting. At the same time, generation and consumption of wireless data are becoming increasingly distributed with ongoing paradigm shift from people-centric to machine-oriented communications, making the operation of future wireless networks even more complex. In mitigating the complexity of future network operation, new approaches of intelligently utilizing distributed computational resources with improved context-awareness becomes extremely important. In this regard, the emerging fog (edge) computing architecture aiming to distribute computing, storage, control, communication, and networking functions closer to end users, have a great potential for enabling efficient operation of future wireless networks. These promising architectures make the adoption of artificial intelligence (AI) principles which incorporate learning, reasoning and decision-making mechanism, as natural choices for designing a tightly integrated network. Towards this end, this article provides a comprehensive survey on the utilization of AI integrating machine learning, data analytics and natural language processing (NLP) techniques for enhancing the efficiency of wireless network operation. In particular, we provide comprehensive discussion on the utilization of these techniques for efficient data acquisition, knowledge discovery, network planning, operation and management of the next generation wireless networks. A brief case study utilizing the AI techniques for this network has also been provided.Comment: ITU Special Issue N.1 The impact of Artificial Intelligence (AI) on communication networks and services, (To appear

    Cellular Network Architectures for the Society in Motion

    Full text link
    Due to rising mobility worldwide, a growing number of people utilizes cellular network services while on the move. Persistent urbanization trends raise the number of daily commuters, leading to a situation where telecommunication requirements are mainly dictated by two categories of users: 1) Static users inside buildings, demanding instantaneous and virtually bandwidth unlimited access to the Internet and Cloud services; 2) moving users outside, expecting ubiquitous and seamless mobility even at high velocity. While most work on future mobile communications is motivated by the first category of users, we outline in this article a layered cellular network architecture that has the potential to efficiently support both user groups simultaneously. We deduce novel transceiver architectures and derive research questions that need to be tackled to effectively maintain wireless connectivity for the envisioned Society in Motion

    Distributed Spectrum Access for Cognitive Small Cell Networks: A Robust Graphical Game Approach

    Full text link
    This letter investigates the problem of distributed spectrum access for cognitive small cell networks. Compared with existing work, two inherent features are considered: i) the transmission of a cognitive small cell base station only interferes with its neighbors due to the low power, i.e., the interference is local, and ii) the channel state is time-varying due to fading. We formulate the problem as a robust graphical game, and prove that it is an ordinal potential game which has at least one pure strategy Nash equilibrium (NE). Also, the lower throughput bound of NE solutions is analytically obtained. To cope with the dynamic and incomplete information constraints, we propose a distribute spectrum access algorithm to converge to some stable results. Simulation results validate the effectiveness of the proposed game-theoretic distributed learning solution in time-varying spectrum environment.Comment: 7 pages, 5 figures, Submitted to IEEE Transactions on Vehicular Technology as a correspondenc

    Securing Heterogeneous IoT with Intelligent DDoS Attack Behavior Learning

    Full text link
    The rapid increase of diverse Internet of things (IoT) services and devices has raised numerous challenges in terms of connectivity, computation, and security, which networks must face in order to provide satisfactory support. This has led to networks evolving into heterogeneous IoT networking infrastructures characterized by multiple access technologies and mobile edge computing (MEC) capabilities. The heterogeneity of the networks, devices, and services introduces serious vulnerabilities to security attacks, especially distributed denial-of-service (DDoS) attacks, which exploit massive IoT devices to exhaust both network and victim resources. As such, this study proposes MECshield, a localized DDoS prevention framework leveraging MEC power to deploy multiple smart filters at the edge of relevant attack-source/destination networks. The cooperation among the smart filters is supervised by a central controller. The central controller localizes each smart filter by feeding appropriate training parameters into its self-organizing map (SOM) component, based on the attacking behavior. The performance of the MECshield framework is verified using three typical IoT traffic scenarios. The numerical results reveal that MECshield outperforms existing solutions.Comment: This work has been submitted to the IEEE journal for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl
    corecore