155 research outputs found

    Aerial Vehicle Tracking by Adaptive Fusion of Hyperspectral Likelihood Maps

    Full text link
    Hyperspectral cameras can provide unique spectral signatures for consistently distinguishing materials that can be used to solve surveillance tasks. In this paper, we propose a novel real-time hyperspectral likelihood maps-aided tracking method (HLT) inspired by an adaptive hyperspectral sensor. A moving object tracking system generally consists of registration, object detection, and tracking modules. We focus on the target detection part and remove the necessity to build any offline classifiers and tune a large amount of hyperparameters, instead learning a generative target model in an online manner for hyperspectral channels ranging from visible to infrared wavelengths. The key idea is that, our adaptive fusion method can combine likelihood maps from multiple bands of hyperspectral imagery into one single more distinctive representation increasing the margin between mean value of foreground and background pixels in the fused map. Experimental results show that the HLT not only outperforms all established fusion methods but is on par with the current state-of-the-art hyperspectral target tracking frameworks.Comment: Accepted at the International Conference on Computer Vision and Pattern Recognition Workshops, 201

    Color in scientific visualization: Perception and image-based data display

    Get PDF
    Visualization is the transformation of information into a visual display that enhances users understanding and interpretation of the data. This thesis project has investigated the use of color and human vision modeling for visualization of image-based scientific data. Two preliminary psychophysical experiments were first conducted on uniform color patches to analyze the perception and understanding of different color attributes, which provided psychophysical evidence and guidance for the choice of color space/attributes for color encoding. Perceptual color scales were then designed for univariate and bivariate image data display and their effectiveness was evaluated through three psychophysical experiments. Some general guidelines were derived for effective color scales design. Extending to high-dimensional data, two visualization techniques were developed for hyperspectral imagery. The first approach takes advantage of the underlying relationships between PCA/ICA of hyperspectral images and the human opponent color model, and maps the first three PCs or ICs to several opponent color spaces including CIELAB, HSV, YCbCr, and YUV. The gray world assumption was adopted to automatically set the mapping origins. The rendered images are well color balanced and can offer a first look capability or initial classification for a wide variety of spectral scenes. The second approach combines a true color image and a PCA image based on a biologically inspired visual attention model that simulates the center-surround structure of visual receptive fields as the difference between fine and coarse scales. The model was extended to take into account human contrast sensitivity and include high-level information such as the second order statistical structure in the form of local variance map, in addition to low-level features such as color, luminance, and orientation. It generates a topographic saliency map for both the true color image and the PCA image, a difference map is then derived and used as a mask to select interesting locations where the PCA image has more salient features than available in the visible bands. The resulting representations preserve consistent natural appearance of the scene, while the selected attentional locations may be analyzed by more advanced algorithms

    Leveraging colour-based pseudo-labels to supervise saliency detection in hyperspectral image datasets

    Get PDF
    Saliency detection mimics the natural visual attention mechanism that identifies an imagery region to be salient when it attracts visual attention more than the background. This image analysis task covers many important applications in several fields such as military science, ocean research, resources exploration, disaster and land-use monitoring tasks. Despite hundreds of models have been proposed for saliency detection in colour images, there is still a large room for improving saliency detection performances in hyperspectral imaging analysis. In the present study, an ensemble learning methodology for saliency detection in hyperspectral imagery datasets is presented. It enhances saliency assignments yielded through a robust colour-based technique with new saliency information extracted by taking advantage of the abundance of spectral information on multiple hyperspectral images. The experiments performed with the proposed methodology provide encouraging results, also compared to several competitors

    Wavelet-Based Multicomponent Denoising Profile for the Classification of Hyperspectral Images

    Get PDF
    The high resolution of the hyperspectral remote sensing images available allows the detailed analysis of even small spatial structures. As a consequence, the study of techniques to efficiently extract spatial information is a very active realm. In this paper, we propose a novel denoising wavelet-based profile for the extraction of spatial information that does not require parameters fixed by the user. Over each band obtained by a wavelet-based feature extraction technique, a denoising profile (DP) is built through the recursive application of discrete wavelet transforms followed by a thresholding process. Each component of the DP consists of features reconstructed by recursively applying inverse wavelet transforms to the thresholded coefficients. Several thresholding methods are explored. In order to show the effectiveness of the extended DP (EDP), we propose a classification scheme based on the computation of the EDP and supervised classification by extreme learning machine. The obtained results are compared to other state-of-the-art methods based on profiles in the literature. An additional study of behavior in the presence of added noise is also performed showing the high reliability of the EDP proposedThis work was supported in part by the Consellería de Educación, Universidade e Formación Profesional under Grants GRC2014/008 and ED431C 2018/2019 and the Ministerio de Economía y Empresa, Gobierno de España under Grant TIN2016-76373-P. Both are cofunded by the European Regional Development FundS

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    VIP-STB farm: scale-up village to county/province level to support science and technology at backyard (STB) program.

    Get PDF
    In this paper, we introduce a new concept in VIP-STB, a funded project through Agri-Tech in China: Newton Network+ (ATCNN), in developing feasible solutions towards scaling-up STB from village level to upper level via some generic models and systems. There are three tasks in this project, i.e. normalized difference vegetation index (NDVI) estimation, wheat density estimation and household-based small farms (HBSF) engagement. In the first task, several machine learning models have been used to evaluate the performance of NDVI estimation. In the second task, integrated software via Python and Twilio is developed to improve communication services and engagement for HBSFs, and provides technical capabilities. In the third task, crop density/population is predicted by conventional image processing techniques. The objectives and strategy for VIP-STB are described, experimental results on each task are presented, and more details on each model that has been implemented are also provided with future development guidance

    Very High Resolution (VHR) Satellite Imagery: Processing and Applications

    Get PDF
    Recently, growing interest in the use of remote sensing imagery has appeared to provide synoptic maps of water quality parameters in coastal and inner water ecosystems;, monitoring of complex land ecosystems for biodiversity conservation; precision agriculture for the management of soils, crops, and pests; urban planning; disaster monitoring, etc. However, for these maps to achieve their full potential, it is important to engage in periodic monitoring and analysis of multi-temporal changes. In this context, very high resolution (VHR) satellite-based optical, infrared, and radar imaging instruments provide reliable information to implement spatially-based conservation actions. Moreover, they enable observations of parameters of our environment at greater broader spatial and finer temporal scales than those allowed through field observation alone. In this sense, recent very high resolution satellite technologies and image processing algorithms present the opportunity to develop quantitative techniques that have the potential to improve upon traditional techniques in terms of cost, mapping fidelity, and objectivity. Typical applications include multi-temporal classification, recognition and tracking of specific patterns, multisensor data fusion, analysis of land/marine ecosystem processes and environment monitoring, etc. This book aims to collect new developments, methodologies, and applications of very high resolution satellite data for remote sensing. The works selected provide to the research community the most recent advances on all aspects of VHR satellite remote sensing
    • …
    corecore