13 research outputs found

    Greedy nominator heuristic: virtual function placement on fog resources

    Get PDF
    Fog computing is an intermediate infrastructure between edge devices (e.g., Internet of Things) and cloud systems that is used to reduce latency in real-time applications. An application can be composed of a collection of virtual functions, between which dependency constraints can be captured in a service function chain (SFC). Virtual functions within an SFC can be executed at different geo-distributed locations. However, virtual functions are prone to failure and often do not complete within a deadline. This results in function reallocation to other nodes within the infrastructure; causing delays, potential data loss during function migration, and increased costs. We proposed Greedy Nominator Heuristic (GNH) to address these issues. GNH is based on redundant deployment and failure tracking of virtual functions. GNH places replicas of each function at multiple locations—taking account of expected completion time, failure risk, and cost. We make use of a MapReduce-based mechanism, where Mappers find suitable locations in parallel, and a Reducer then ranks these locations. Our results show that GNH reduces latency by up to 68%, and is more cost effective than other approaches which rely on state-of-the-art optimization algorithms to allocate replicas

    Algorithm Development and VLSI Implementation of Energy Efficient Decoders of Polar Codes

    Get PDF
    With its low error-floor performance, polar codes attract significant attention as the potential standard error correction code (ECC) for future communication and data storage. However, the VLSI implementation complexity of polar codes decoders is largely influenced by its nature of in-series decoding. This dissertation is dedicated to presenting optimal decoder architectures for polar codes. This dissertation addresses several structural properties of polar codes and key properties of decoding algorithms that are not dealt with in the prior researches. The underlying concept of the proposed architectures is a paradigm that simplifies and schedules the computations such that hardware is simplified, latency is minimized and bandwidth is maximized. In pursuit of the above, throughput centric successive cancellation (TCSC) and overlapping path list successive cancellation (OPLSC) VLSI architectures and express journey BP (XJBP) decoders for the polar codes are presented. An arbitrary polar code can be decomposed by a set of shorter polar codes with special characteristics, those shorter polar codes are referred to as constituent polar codes. By exploiting the homogeneousness between decoding processes of different constituent polar codes, TCSC reduces the decoding latency of the SC decoder by 60% for codes with length n = 1024. The error correction performance of SC decoding is inferior to that of list successive cancellation decoding. The LSC decoding algorithm delivers the most reliable decoding results; however, it consumes most hardware resources and decoding cycles. Instead of using multiple instances of decoding cores in the LSC decoders, a single SC decoder is used in the OPLSC architecture. The computations of each path in the LSC are arranged to occupy the decoder hardware stages serially in a streamlined fashion. This yields a significant reduction of hardware complexity. The OPLSC decoder has achieved about 1.4 times hardware efficiency improvement compared with traditional LSC decoders. The hardware efficient VLSI architectures for TCSC and OPLSC polar codes decoders are also introduced. Decoders based on SC or LSC algorithms suffer from high latency and limited throughput due to their serial decoding natures. An alternative approach to decode the polar codes is belief propagation (BP) based algorithm. In BP algorithm, a graph is set up to guide the beliefs propagated and refined, which is usually referred to as factor graph. BP decoding algorithm allows decoding in parallel to achieve much higher throughput. XJBP decoder facilitates belief propagation by utilizing the specific constituent codes that exist in the conventional factor graph, which results in an express journey (XJ) decoder. Compared with the conventional BP decoding algorithm for polar codes, the proposed decoder reduces the computational complexity by about 40.6%. This enables an energy-efficient hardware implementation. To further explore the hardware consumption of the proposed XJBP decoder, the computations scheduling is modeled and analyzed in this dissertation. With discussions on different hardware scenarios, the optimal scheduling plans are developed. A novel memory-distributed micro-architecture of the XJBP decoder is proposed and analyzed to solve the potential memory access problems of the proposed scheduling strategy. The register-transfer level (RTL) models of the XJBP decoder are set up for comparisons with other state-of-the-art BP decoders. The results show that the power efficiency of BP decoders is improved by about 3 times

    Algorithm Development and VLSI Implementation of Energy Efficient Decoders of Polar Codes

    Get PDF
    With its low error-floor performance, polar codes attract significant attention as the potential standard error correction code (ECC) for future communication and data storage. However, the VLSI implementation complexity of polar codes decoders is largely influenced by its nature of in-series decoding. This dissertation is dedicated to presenting optimal decoder architectures for polar codes. This dissertation addresses several structural properties of polar codes and key properties of decoding algorithms that are not dealt with in the prior researches. The underlying concept of the proposed architectures is a paradigm that simplifies and schedules the computations such that hardware is simplified, latency is minimized and bandwidth is maximized. In pursuit of the above, throughput centric successive cancellation (TCSC) and overlapping path list successive cancellation (OPLSC) VLSI architectures and express journey BP (XJBP) decoders for the polar codes are presented. An arbitrary polar code can be decomposed by a set of shorter polar codes with special characteristics, those shorter polar codes are referred to as constituent polar codes. By exploiting the homogeneousness between decoding processes of different constituent polar codes, TCSC reduces the decoding latency of the SC decoder by 60% for codes with length n = 1024. The error correction performance of SC decoding is inferior to that of list successive cancellation decoding. The LSC decoding algorithm delivers the most reliable decoding results; however, it consumes most hardware resources and decoding cycles. Instead of using multiple instances of decoding cores in the LSC decoders, a single SC decoder is used in the OPLSC architecture. The computations of each path in the LSC are arranged to occupy the decoder hardware stages serially in a streamlined fashion. This yields a significant reduction of hardware complexity. The OPLSC decoder has achieved about 1.4 times hardware efficiency improvement compared with traditional LSC decoders. The hardware efficient VLSI architectures for TCSC and OPLSC polar codes decoders are also introduced. Decoders based on SC or LSC algorithms suffer from high latency and limited throughput due to their serial decoding natures. An alternative approach to decode the polar codes is belief propagation (BP) based algorithm. In BP algorithm, a graph is set up to guide the beliefs propagated and refined, which is usually referred to as factor graph. BP decoding algorithm allows decoding in parallel to achieve much higher throughput. XJBP decoder facilitates belief propagation by utilizing the specific constituent codes that exist in the conventional factor graph, which results in an express journey (XJ) decoder. Compared with the conventional BP decoding algorithm for polar codes, the proposed decoder reduces the computational complexity by about 40.6%. This enables an energy-efficient hardware implementation. To further explore the hardware consumption of the proposed XJBP decoder, the computations scheduling is modeled and analyzed in this dissertation. With discussions on different hardware scenarios, the optimal scheduling plans are developed. A novel memory-distributed micro-architecture of the XJBP decoder is proposed and analyzed to solve the potential memory access problems of the proposed scheduling strategy. The register-transfer level (RTL) models of the XJBP decoder are set up for comparisons with other state-of-the-art BP decoders. The results show that the power efficiency of BP decoders is improved by about 3 times

    ADAM: A Decentralized Parallel Computer Architecture Featuring Fast Thread and Data Migration and a Uniform Hardware Abstraction

    Get PDF
    The furious pace of Moore's Law is driving computer architecture into a realm where the the speed of light is the dominant factor in system latencies. The number of clock cycles to span a chip are increasing, while the number of bits that can be accessed within a clock cycle is decreasing. Hence, it is becoming more difficult to hide latency. One alternative solution is to reduce latency by migrating threads and data, but the overhead of existing implementations has previously made migration an unserviceable solution so far. I present an architecture, implementation, and mechanisms that reduces the overhead of migration to the point where migration is a viable supplement to other latency hiding mechanisms, such as multithreading. The architecture is abstract, and presents programmers with a simple, uniform fine-grained multithreaded parallel programming model with implicit memory management. In other words, the spatial nature and implementation details (such as the number of processors) of a parallel machine are entirely hidden from the programmer. Compiler writers are encouraged to devise programming languages for the machine that guide a programmer to express their ideas in terms of objects, since objects exhibit an inherent physical locality of data and code. The machine implementation can then leverage this locality to automatically distribute data and threads across the physical machine by using a set of high performance migration mechanisms. An implementation of this architecture could migrate a null thread in 66 cycles -- over a factor of 1000 improvement over previous work. Performance also scales well; the time required to move a typical thread is only 4 to 5 times that of a null thread. Data migration performance is similar, and scales linearly with data block size. Since the performance of the migration mechanism is on par with that of an L2 cache, the implementation simulated in my work has no data caches and relies instead on multithreading and the migration mechanism to hide and reduce access latencies

    System Development and VLSI Implementation of High Throughput and Hardware Efficient Polar Code Decoder

    Get PDF
    Polar code is the first channel code which is provable to achieve the Shannon capacity. Additionally, it has a very good performance in terms of low error floor. All these merits make it a potential candidate for the future standard of wireless communication or storage system. Polar code is received increasing research interest these years. However, the hardware implementation of hardware decoder still has not meet the expectation of practical applications, no matter from neither throughput aspect nor hardware efficient aspect. This dissertation presents several system development approaches and hardware structures for three widely known decoding algorithms. These algorithms are successive cancellation (SC), list successive cancellation (LSC) and belief propagation (BP). All the efforts are in order to maximize the throughput meanwhile minimize the hardware cost. Throughput centric successive cancellation (TCSC) decoder is proposed for SC decoding. By introducing the concept of constituent code, the decoding latency is significantly reduced with a negligible decoding performance loss. However, the specifically designed computation unites dramatically increase the hardware cost, and how to handle the conventional polar code sets and constituent codes sets makes the hardware implementation more complicated. By exploiting the natural property of conventional SC decoder, datapaths for decoding constituent codes are compatibly built via computation units sharing technique. This approach does not incur additional hardware cost expect some multiplexer logic, but can significantly increase the decoding throughput. Other techniques such as pre-computing and gate-level optimization are used as well in order to further increase the decoding throughput. A specific designed partial sum generator (PSG) is also investigated in this dissertation. This PSG is hardware efficient and timing compatible with proposed TCSC decoder. Additionally, a polar code construction scheme with constituent codes optimization is also presents. This construction scheme aims to reduce the constituent codes based SC decoding latency. Results show that, compared with the state-of-art decoder, TCSC can achieve at least 60% latency reduction for the codes with length n = 1024. By using Nangate FreePDK 45nm process, TCSC decoder can reach throughput up to 5.81 Gbps and 2.01 Gbps for (1024, 870) and (1024, 512) polar code, respectively. Besides, with the proposed construction scheme, the TCSC decoder generally is able to further achieve at least around 20% latency deduction with an negligible gain loss. Overlapped List Successive Cancellation (OLSC) is proposed for LSC decoding as a design approach. LSC decoding has a better performance than LS decoding at the cost of hardware consumption. With such approach, the l (l > 1) instances of successive cancellation (SC) decoder for LSC with list size l can be cut down to only one. This results in a dramatic reduction of the hardware complexity without any decoding performance loss. Meanwhile, approaches to reduce the latency associated with the pipeline scheme are also investigated. Simulation results show that with proposed design approach the hardware efficiency is increased significantly over the recently proposed LSC decoders. Express Journey Belief Propagation (XJBP) is proposed for BP decoding. This idea origins from extending the constituent codes concept from SC to BP decoding. Express journey refers to the datapath of specific constituent codes in the factor graph, which accelerates the belief information propagation speed. The XJBP decoder is able to achieve 40.6% computational complexity reduction with the conventional BP decoding. This enables an energy efficient hardware implementation. In summary, all the efforts to optimize the polar code decoder are presented in this dissertation, supported by the careful analysis, precise description, extensively numerical simulations, thoughtful discussion and RTL implementation on VLSI design platforms

    System Development and VLSI Implementation of High Throughput and Hardware Efficient Polar Code Decoder

    Get PDF
    Polar code is the first channel code which is provable to achieve the Shannon capacity. Additionally, it has a very good performance in terms of low error floor. All these merits make it a potential candidate for the future standard of wireless communication or storage system. Polar code is received increasing research interest these years. However, the hardware implementation of hardware decoder still has not meet the expectation of practical applications, no matter from neither throughput aspect nor hardware efficient aspect. This dissertation presents several system development approaches and hardware structures for three widely known decoding algorithms. These algorithms are successive cancellation (SC), list successive cancellation (LSC) and belief propagation (BP). All the efforts are in order to maximize the throughput meanwhile minimize the hardware cost. Throughput centric successive cancellation (TCSC) decoder is proposed for SC decoding. By introducing the concept of constituent code, the decoding latency is significantly reduced with a negligible decoding performance loss. However, the specifically designed computation unites dramatically increase the hardware cost, and how to handle the conventional polar code sets and constituent codes sets makes the hardware implementation more complicated. By exploiting the natural property of conventional SC decoder, datapaths for decoding constituent codes are compatibly built via computation units sharing technique. This approach does not incur additional hardware cost expect some multiplexer logic, but can significantly increase the decoding throughput. Other techniques such as pre-computing and gate-level optimization are used as well in order to further increase the decoding throughput. A specific designed partial sum generator (PSG) is also investigated in this dissertation. This PSG is hardware efficient and timing compatible with proposed TCSC decoder. Additionally, a polar code construction scheme with constituent codes optimization is also presents. This construction scheme aims to reduce the constituent codes based SC decoding latency. Results show that, compared with the state-of-art decoder, TCSC can achieve at least 60% latency reduction for the codes with length n = 1024. By using Nangate FreePDK 45nm process, TCSC decoder can reach throughput up to 5.81 Gbps and 2.01 Gbps for (1024, 870) and (1024, 512) polar code, respectively. Besides, with the proposed construction scheme, the TCSC decoder generally is able to further achieve at least around 20% latency deduction with an negligible gain loss. Overlapped List Successive Cancellation (OLSC) is proposed for LSC decoding as a design approach. LSC decoding has a better performance than LS decoding at the cost of hardware consumption. With such approach, the l (l > 1) instances of successive cancellation (SC) decoder for LSC with list size l can be cut down to only one. This results in a dramatic reduction of the hardware complexity without any decoding performance loss. Meanwhile, approaches to reduce the latency associated with the pipeline scheme are also investigated. Simulation results show that with proposed design approach the hardware efficiency is increased significantly over the recently proposed LSC decoders. Express Journey Belief Propagation (XJBP) is proposed for BP decoding. This idea origins from extending the constituent codes concept from SC to BP decoding. Express journey refers to the datapath of specific constituent codes in the factor graph, which accelerates the belief information propagation speed. The XJBP decoder is able to achieve 40.6% computational complexity reduction with the conventional BP decoding. This enables an energy efficient hardware implementation. In summary, all the efforts to optimize the polar code decoder are presented in this dissertation, supported by the careful analysis, precise description, extensively numerical simulations, thoughtful discussion and RTL implementation on VLSI design platforms

    Potential markets for advanced satellite communications

    Get PDF
    This report identifies trends in the volume and type of traffic offered to the U.S. domestic communications infrastructure and extrapolates these trends through the year 2011. To describe how telecommunications service providers are adapting to the identified trends, this report assesses the status, plans, and capacity of the domestic communications infrastructure. Cable, satellite, and radio components of the infrastructure are examined separately. The report also assesses the following major applications making use of the infrastructure: (1) Broadband services, including Broadband Integrated Services Digital Network (BISDN), Switched Multimegabit Data Service (SMDS), and frame relay; (2) mobile services, including voice, location, and paging; (3) Very Small Aperture Terminals (VSAT), including mesh VSAT; and (4) Direct Broadcast Satellite (DBS) for audio and video. The report associates satellite implementation of specific applications with market segments appropriate to their features and capabilities. The volume and dollar value of these market segments are estimated. For the satellite applications able to address the needs of significant market segments, the report also examines the potential of each satellite-based application to capture business from alternative technologies

    An Investigation on Benefit-Cost Analysis of Greenhouse Structures in Antalya

    Get PDF
    Significant population increase across the world, loss of cultivable land and increasing demand for food put pressure on agriculture. To meet the demand, greenhouses are built, which are, light structures with transparent cladding material in order to provide controlled microclimatic environment proper for plant production. Conceptually, greenhouses are similar with manufacturing buildings where a controlled environment for manufacturing and production have been provided and proper spaces for standardized production processes have been enabled. Parallel with the trends in the world, particularly in southern regions, greenhouse structures have been increasingly constructed and operated in Turkey. A significant number of greenhouses are located at Antalya. The satellite images demonstrated that for over last three decades, there has been a continuous invasion of greenhouses on all cultivable land. There are various researches and attempts for the improvement of greenhouse design and for increasing food production by decreasing required energy consumption. However, the majority of greenhouses in Turkey are very rudimentary structures where capital required for investment is low, but maintenance requirements are high when compared with new generation greenhouse structures. In this research paper, life-long capital requirements for construction and operation of greenhouse buildings in Antalya has been investigated by using benefit-cost analysis study

    Knowledge Capturing in Design Briefing Process for Requirement Elicitation and Validation

    Get PDF
    Knowledge capturing and reusing are major processes of knowledge management that deal with the elicitation of valuable knowledge via some techniques and methods for use in actual and further studies, projects, services, or products. The construction industry, as well, adopts and uses some of these concepts to improve various construction processes and stages. From pre-design to building delivery knowledge management principles and briefing frameworks have been implemented across project stakeholders: client, design teams, construction teams, consultants, and facility management teams. At pre-design and design stages, understanding the client’s needs and users’ knowledge are crucial for identifying and articulating the expected requirements and objectives. Due to underperforming results and missed goals and objectives, many projects finish with highly dissatisfied clients and loss of contracts for some organizations. Knowledge capturing has beneficial effects via its principles and methods on requirement elicitation and validation at the briefing stage between user, client and designer. This paper presents the importance and usage of knowledge capturing and reusing in briefing process at pre-design and design stages especially the involvement of client and user, and explores the techniques and technologies that are usable in briefing process for requirement elicitation
    corecore