7 research outputs found

    On Improving Generalization of CNN-Based Image Classification with Delineation Maps Using the CORF Push-Pull Inhibition Operator

    Get PDF
    Deployed image classification pipelines are typically dependent on the images captured in real-world environments. This means that images might be affected by different sources of perturbations (e.g. sensor noise in low-light environments). The main challenge arises by the fact that image quality directly impacts the reliability and consistency of classification tasks. This challenge has, hence, attracted wide interest within the computer vision communities. We propose a transformation step that attempts to enhance the generalization ability of CNN models in the presence of unseen noise in the test set. Concretely, the delineation maps of given images are determined using the CORF push-pull inhibition operator. Such an operation transforms an input image into a space that is more robust to noise before being processed by a CNN. We evaluated our approach on the Fashion MNIST data set with an AlexNet model. It turned out that the proposed CORF-augmented pipeline achieved comparable results on noise-free images to those of a conventional AlexNet classification model without CORF delineation maps, but it consistently achieved significantly superior performance on test images perturbed with different levels of Gaussian and uniform noise

    Data Hiding and Its Applications

    Get PDF
    Data hiding techniques have been widely used to provide copyright protection, data integrity, covert communication, non-repudiation, and authentication, among other applications. In the context of the increased dissemination and distribution of multimedia content over the internet, data hiding methods, such as digital watermarking and steganography, are becoming increasingly relevant in providing multimedia security. The goal of this book is to focus on the improvement of data hiding algorithms and their different applications (both traditional and emerging), bringing together researchers and practitioners from different research fields, including data hiding, signal processing, cryptography, and information theory, among others

    Additional information delivery to image content via improved unseen–visible watermarking

    Get PDF
    In a practical watermark scenario, watermarks are used to provide auxiliary information; in this way, an analogous digital approach called unseen–visible watermark has been introduced to deliver auxiliary information. In this algorithm, the embedding stage takes advantage of the visible and invisible watermarking to embed an owner logotype or barcodes as watermarks; in the exhibition stage, the equipped functions of the display devices are used to reveal the watermark to the naked eyes, eliminating any watermark exhibition algorithm. In this paper, a watermark complement strategy for unseen–visible watermarking is proposed to improve the embedding stage, reducing the histogram distortion and the visual degradation of the watermarked image. The presented algorithm exhibits the following contributions: first, the algorithm can be applied to any class of images with large smooth regions of low or high intensity; second, a watermark complement strategy is introduced to reduce the visual degradation and histogram distortion of the watermarked image; and third, an embedding error measurement is proposed. Evaluation results show that the proposed strategy has high performance in comparison with other algorithms, providing a high visual quality of the exhibited watermark and preserving its robustness in terms of readability and imperceptibility against geometric and processing attacks

    Connected Attribute Filtering Based on Contour Smoothness

    Get PDF
    corecore