434 research outputs found

    Software Process Modeling with Eclipse Process Framework

    Get PDF
    The software development industry is constantly evolving. The rise of the agile methodologies in the late 1990s, and new development tools and technologies require growing attention for everybody working within this industry. The organizations have, however, had a mixture of various processes and different process languages since a standard software development process language has not been available. A promising process meta-model called Software & Systems Process Engineering Meta- Model (SPEM) 2.0 has been released recently. This is applied by tools such as Eclipse Process Framework Composer, which is designed for implementing and maintaining processes and method content. Its aim is to support a broad variety of project types and development styles. This thesis presents the concepts of software processes, models, traditional and agile approaches, method engineering, and software process improvement. Some of the most well-known methodologies (RUP, OpenUP, OpenMethod, XP and Scrum) are also introduced with a comparison provided between them. The main focus is on the Eclipse Process Framework and SPEM 2.0, their capabilities, usage and modeling. As a proof of concept, I present a case study of modeling OpenMethod with EPF Composer and SPEM 2.0. The results show that the new meta-model and tool have made it possible to easily manage method content, publish versions with customized content, and connect project tools (such as MS Project) with the process content. The software process modeling also acts as a process improvement activity.Ohjelmistoprosessin mallinnus Eclipse Process Frameworkilla ja SPEM 2.0 metamallilla Ohjelmistot ja ohjelmistoteollisuus kehittyvät jatkuvasti. Ketterien menetelmien tulo 1990-luvun loppupuolella, uudet kehitystyökalut ja teknologiat vaativat yhä enemmän huomiota alalla työskenteleviltä ihmisiltä. Organisaatioilla on kuitenkin ollut sekalainen kirjo prosesseja ja erilaisia prosessikuvauskieliä, koska standardia kuvauskieltä ei ole ollut saatavilla. Prosessimetamalli SPEM 2.0 julkaistiin hiljattain. Tätä mallia hyödyntää mm. Eclipse Process Framework Composer (EPFC) –työkalu, joka on suunniteltu prosessien ja menetelmäsisällön kehittämiseen ja ylläpitoon. Työkalun tavoitteena on tukea useita erilaisia projektityyppejä ja kehitystyylejä. Tässä työssä esitellään seuraavat aiheet ja käsitteet: ohjelmistoprosessit, mallit, perinteiset ja ketterät lähestymistavat, metoditekniikkaa sekä prosessien kehittäminen. Lisäksi tutustutaan muutamiin tunnetuimmista metodologioista (RUP, OpenUP, OpenMethod, XP ja Scrum) ja vertaillaan näitä. Työssä tutkitaan tarkemmin Eclipse Process Framework Composer –työkalua, SPEM 2.0 metamallia, näiden ominaisuuksia, käyttöä sekä mallintamista. Esitän tutkimustulokset ja tutkimuksenkulun OpenMethodin mallintamisesta EPFC –työkalulla sekä SPEM 2.0 -metamallilla. Tulokset osoittavat, että uusi metamalli ja työkalu helpottavat prosessin ja menetelmäsisällön hallintaa, mahdollistavat räätälöityjen julkaisujen teon sisällöstä, sekä yhdistävät prosessin projektityökaluihin kuten MS Projectiin. Mallinnus voidaan lisäksi ymmärtää osana prosessin kehittämistä.Siirretty Doriast

    SPEM 2.0 extension for pervasive information systems

    Get PDF
    Pervasive computing is a research field of computing technology that aims to achieve a new computing paradigm. In this paradigm, the physical environment has a high degree of pervasiveness and availability of computers and other information technology (IT) devices, usually with communication capabilities. Pervasive Information Systems (PIS), composed by these kinds of devices, bring issues that challenge software development for them. Model-Driven Development (MDD), strongly focusing and relying on models, has the potential to allow: the use of concepts closer to the domain and the reduction of semantic gaps; higher automation and lower dependency to technological changes; higher capture of expert knowledge and reuse; an overall increased productivity. Along with the focus and use of models, software development processes are fundamental to efficient development efforts of successful software systems. For the description of processes, Software & Systems Process Engineering Meta-Model Specification (SPEM) is the current standard specification published by the Object Management Group (OMG). This paper presents an extension to SPEM (version 2.0) Base Plug-In Profile that includes stereotypes needed to support a suitable structural process organization for MDD approaches aiming to develop software for PIS. A case study is provided to evaluate the applicability of the extension

    Globally Distributed Software Process Engineering

    Get PDF
    Software processes is becoming a more addressed issue in software development companies every day. These processes are defined regardless of the environment in which they run. To incorporate aspects of that environment is essential, especially if referring to GSE. Despite this fact, the process itself should not be necessary modified. This paper provides a first draft of a research focused on software process definition, modeling, implementation and evaluation in a GSE environment, so as to facilitate the information exchange through a hierarchical process that does not involve modification of specific processes.Ministerio de Educación y Ciencia TIN2007-67843-C06-03Ministerio de Educación y Ciencia TIN2010-20057-C03-0

    Software Development Process Modeling. Developers Perspective to Contemporary Modeling Techniques

    Get PDF
    Formal software development processes and well-defined development methodologies are nowadays seen as the definite way to produce high-quality software within time-limits and budgets. The variety of such high-level methodologies is huge ranging from rigorous process frameworks like CMMI and RUP to more lightweight agile methodologies. The need for managing this variety and the fact that practically every software development organization has its own unique set of development processes and methods have created a profession of software process engineers. Different kinds of informal and formal software process modeling languages are essential tools for process engineers. These are used to define processes in a way which allows easy management of processes, for example process dissemination, process tailoring and process enactment. The process modeling languages are usually used as a tool for process engineering where the main focus is on the processes themselves. This dissertation has a different emphasis. The dissertation analyses modern software development process modeling from the software developers’ point of view. The goal of the dissertation is to investigate whether the software process modeling and the software process models aid software developers in their day-to-day work and what are the main mechanisms for this. The focus of the work is on the Software Process Engineering Metamodel (SPEM) framework which is currently one of the most influential process modeling notations in software engineering. The research theme is elaborated through six scientific articles which represent the dissertation research done with process modeling during an approximately five year period. The research follows the classical engineering research discipline where the current situation is analyzed, a potentially better solution is developed and finally its implications are analyzed. The research applies a variety of different research techniques ranging from literature surveys to qualitative studies done amongst software practitioners. The key finding of the dissertation is that software process modeling notations and techniques are usually developed in process engineering terms. As a consequence the connection between the process models and actual development work is loose. In addition, the modeling standards like SPEM are partially incomplete when it comes to pragmatic process modeling needs, like light-weight modeling and combining pre-defined process components. This leads to a situation, where the full potential of process modeling techniques for aiding the daily development activities can not be achieved. Despite these difficulties the dissertation shows that it is possible to use modeling standards like SPEM to aid software developers in their work. The dissertation presents a light-weight modeling technique, which software development teams can use to quickly analyze their work practices in a more objective manner. The dissertation also shows how process modeling can be used to more easily compare different software development situations and to analyze their differences in a systematic way. Models also help to share this knowledge with others. A qualitative study done amongst Finnish software practitioners verifies the conclusions of other studies in the dissertation. Although processes and development methodologies are seen as an essential part of software development, the process modeling techniques are rarely used during the daily development work. However, the potential of these techniques intrigues the practitioners. As a conclusion the dissertation shows that process modeling techniques, most commonly used as tools for process engineers, can also be used as tools for organizing the daily software development work. This work presents theoretical solutions for bringing the process modeling closer to the ground-level software development activities. These theories are proven feasible by presenting several case studies where the modeling techniques are used e.g. to find differences in the work methods of the members of a software team and to share the process knowledge to a wider audience.Siirretty Doriast

    8 - Agent-Oriented Software Engineering

    Get PDF

    Development framework pattern for pervasive information systems

    Get PDF
    During last decade, the world watched a social acceptance of computing and computers, enhanced information technology devices, wireless networks, and Internet; they gradually became a fundamental resource for individuals. Nowadays, people, organizations, and the environment are empowered by computing devices and systems; they depend on services offered by modern Pervasive Information Systems supported by complex software systems and technology. Research on software development for PIS-delivered information, on issues and challenges on software development for them, and several other contributions have been delivered. Among these contributions are a development framework for PIS, a profiling and framing structure approach, and a SPEM 2.0 extension. This chapter, revisiting these contributions, provides an additional contribution: a pattern to support the use of the development framework and profiling approach on software development for PIS. This contribution completes a first series of contributions for the development of PIS. This chapter also presents a case study that allowed demonstrating the applicability of these contribution

    BPMNt : a proposal for flexible process tailoring representation in BPMN /

    Get PDF
    Business Process Model and Notation (BPMN) is a de-facto standard for business process modeling, which focuses on the representation of the process behavior. However, it can also succeed in representing the behavior of software processes, since they are a type of business process. Although BPMN has been extensively used for modeling processes in different domains, its standard specification does not have any mechanism to support users in activities related to process adaptation (tailoring). Moreover, researches extending BPMN are based on complex consolidated models, which hamper the analysis and maintenance of individual variant process models and are not appropriate for application domains in which process variations are difficult to predict, such as in software development processes. Thus, our objective was to provide a BPMN-compliant extension and associated mechanisms for specifying flexible process tailoring on models produced with this language while ensuring the correctness of adapted process models and explicitly capturing change traces. We have focused our research on the domains of Software Process Engineering (SPE) and Business Process Management (BPM). At last, we evaluated the applicability of the proposal for representing realistic tailoring scenarios in both domains.BPMN (Business Process Model and Notation) é um padrão para modelagem de processos de negócio, que tem seu foco na representação do comportamento de processos. No entanto, ele pode também ser usado para representar o comportamento de processos de software, já que eles são um tipo de processo de negócio. Embora BPMN tem sido extensivamente usado para modelar processos em diferentes domínios, sua especificação padrão não possui nenhum mecanismo para apoiar usuários em atividades relacionadas à adaptação de processos. Pesquisas que estendem o padrão são baseadas em modelos complexos, que dificultam a análise e manutenção de modelos variantes, e não são apropriadas para domínios de aplicação onde variações de processo são difíceis de predizer, como em processos de desenvolvimento de software. Assim, nosso objetivo foi fornecer uma extensão para BPMN, chamada BPMNt, e mecanismos de suporte para especificar, de modo flexível, adaptações em processos modelados com esta linguagem. BPMNt deve também garantir a corretude de modelos adaptados e explicitamente capturar rastros de mudanças realizadas. Essa pesquisa teve como foco os domínios de Engenharia de Processos de Software e Gerenciamento de Processos de Negócio. Por fim, nós avaliamos a aplicabilidade da proposta para representar cenários de adaptação reais em ambos os domínios

    12 - Agent-Oriented Software Engineering

    Get PDF

    Towards a tool-supported approach for collaborative process modeling and enactment

    Get PDF
    International audienceIn software engineering, as in any collective endeavor, understanding and supporting collaboration is a major concern. Unfortunately, the main concepts of popular process formalisms are not always adequate to describe collaboration. We extend the Software & System Process Engineering Meta-Model (SPEM) by introducing concepts needed to represent precise and dynamic collaboration setups that practitioners create to address ever-changing challenges. Our goal is to give practitioners the ability to express evolving understanding about collaboration in a formalism suited for easy representation and tool-provided assistance. Our work is based on a collaborative process metamodel we have developed. In this paper, we first present a meta-process for process modeling and enactment, which we apply to our collaborative process metamodel. Then we describe the implementation of a suitable process model editor, and a project plan generator from process models
    corecore