130 research outputs found

    Assessing and augmenting SCADA cyber security: a survey of techniques

    Get PDF
    SCADA systems monitor and control critical infrastructures of national importance such as power generation and distribution, water supply, transportation networks, and manufacturing facilities. The pervasiveness, miniaturisations and declining costs of internet connectivity have transformed these systems from strictly isolated to highly interconnected networks. The connectivity provides immense benefits such as reliability, scalability and remote connectivity, but at the same time exposes an otherwise isolated and secure system, to global cyber security threats. This inevitable transformation to highly connected systems thus necessitates effective security safeguards to be in place as any compromise or downtime of SCADA systems can have severe economic, safety and security ramifications. One way to ensure vital asset protection is to adopt a viewpoint similar to an attacker to determine weaknesses and loopholes in defences. Such mind sets help to identify and fix potential breaches before their exploitation. This paper surveys tools and techniques to uncover SCADA system vulnerabilities. A comprehensive review of the selected approaches is provided along with their applicability

    A Systematic Review of the State of Cyber-Security in Water Systems

    Get PDF
    Critical infrastructure systems are evolving from isolated bespoke systems to those that use general-purpose computing hosts, IoT sensors, edge computing, wireless networks and artificial intelligence. Although this move improves sensing and control capacity and gives better integration with business requirements, it also increases the scope for attack from malicious entities that intend to conduct industrial espionage and sabotage against these systems. In this paper, we review the state of the cyber-security research that is focused on improving the security of the water supply and wastewater collection and treatment systems that form part of the critical national infrastructure. We cover the publication statistics of the research in this area, the aspects of security being addressed, and future work required to achieve better cyber-security for water systems

    Preliminaries of orthogonal layered defence using functional and assurance controls in industrial control systems

    Get PDF
    Industrial Control Systems (ICSs) are responsible for the automation of different processes and the overall control of systems that include highly sensitive potential targets such as nuclear facilities, energy-distribution, water-supply, and mass-transit systems. Given the increased complexity and rapid evolvement of their threat landscape, and the fact that these systems form part of the Critical National infrastructure (CNI), makes them an emerging domain of conflict, terrorist attacks, and a playground for cyberexploitation. Existing layered-defence approaches are increasingly criticised for their inability to adequately protect against resourceful and persistent adversaries. It is therefore essential that emerging techniques, such as orthogonality, be combined with existing security strategies to leverage defence advantages against adaptive and often asymmetrical attack vectors. The concept of orthogonality is relatively new and unexplored in an ICS environment and consists of having assurance control as well as functional control at each layer. Our work seeks to partially articulate a framework where multiple functional and assurance controls are introduced at each layer of ICS architectural design to further enhance security while maintaining critical real-time transfer of command and control traffic

    A Survey on Industrial Control System Testbeds and Datasets for Security Research

    Full text link
    The increasing digitization and interconnection of legacy Industrial Control Systems (ICSs) open new vulnerability surfaces, exposing such systems to malicious attackers. Furthermore, since ICSs are often employed in critical infrastructures (e.g., nuclear plants) and manufacturing companies (e.g., chemical industries), attacks can lead to devastating physical damages. In dealing with this security requirement, the research community focuses on developing new security mechanisms such as Intrusion Detection Systems (IDSs), facilitated by leveraging modern machine learning techniques. However, these algorithms require a testing platform and a considerable amount of data to be trained and tested accurately. To satisfy this prerequisite, Academia, Industry, and Government are increasingly proposing testbed (i.e., scaled-down versions of ICSs or simulations) to test the performances of the IDSs. Furthermore, to enable researchers to cross-validate security systems (e.g., security-by-design concepts or anomaly detectors), several datasets have been collected from testbeds and shared with the community. In this paper, we provide a deep and comprehensive overview of ICSs, presenting the architecture design, the employed devices, and the security protocols implemented. We then collect, compare, and describe testbeds and datasets in the literature, highlighting key challenges and design guidelines to keep in mind in the design phases. Furthermore, we enrich our work by reporting the best performing IDS algorithms tested on every dataset to create a baseline in state of the art for this field. Finally, driven by knowledge accumulated during this survey's development, we report advice and good practices on the development, the choice, and the utilization of testbeds, datasets, and IDSs

    Moving target defense for securing smart grid communications: Architectural design, implementation and evaluation

    Get PDF
    Supervisory Control And Data Acquisition (SCADA) communications are often subjected to various kinds of sophisticated cyber-attacks which can have a serious impact on the Critical Infrastructure such as the power grid. Most of the time, the success of the attack is based on the static characteristics of the system, thereby enabling an easier profiling of the target system(s) by the adversary and consequently exploiting their limited resources. In this thesis, a novel approach to mitigate such static vulnerabilities is proposed by implementing a Moving Target Defense (MTD) strategy in a power grid SCADA environment, which leverages the existing communication network with an end-to-end IP Hopping technique among the trusted peer devices. This offers a proactive L3 layer network defense, minimizing IP-specific threats and thwarting worm propagation, APTs, etc., which utilize the cyber kill chain for attacking the system through the SCADA network. The main contribution of this thesis is to show how MTD concepts provide proactive defense against targeted cyber-attacks, and a dynamic attack surface to adversaries without compromising the availability of a SCADA system. Specifically, the thesis presents a brief overview of the different type of MTD designs, the proposed MTD architecture and its implementation with IP hopping technique over a Control Center–Substation network link along with a 3-way handshake protocol for synchronization on the Iowa State’s Power Cyber testbed. The thesis further investigates the delay and throughput characteristics of the entire system with and without the MTD to choose the best hopping rate for the given link. It also includes additional contributions for making the testbed scenarios more realistic to real world scenarios with multi-hop, multi-path WAN. Using that and studying a specific attack model, the thesis analyses the best ranges of IP address for different hopping rate and different number of interfaces. Finally, the thesis describes two case studies to explore and identify potential weaknesses of the proposed mechanism, and also experimentally validate the proposed mitigation alterations to resolve the discovered vulnerabilities. As part of future work, we plan to extend this work by optimizing the MTD algorithm to be more resilient by incorporating other techniques like network port mutation to further increase the attack complexity and cost
    • …
    corecore