75 research outputs found

    Decision-Focused Learning: Foundations, State of the Art, Benchmark and Future Opportunities

    Full text link
    Decision-focused learning (DFL) is an emerging paradigm in machine learning which trains a model to optimize decisions, integrating prediction and optimization in an end-to-end system. This paradigm holds the promise to revolutionize decision-making in many real-world applications which operate under uncertainty, where the estimation of unknown parameters within these decision models often becomes a substantial roadblock. This paper presents a comprehensive review of DFL. It provides an in-depth analysis of the various techniques devised to integrate machine learning and optimization models, introduces a taxonomy of DFL methods distinguished by their unique characteristics, and conducts an extensive empirical evaluation of these methods proposing suitable benchmark dataset and tasks for DFL. Finally, the study provides valuable insights into current and potential future avenues in DFL research.Comment: Experimental Survey and Benchmarkin

    Structured machine learning models for robustness against different factors of variability in robot control

    Get PDF
    An important feature of human sensorimotor skill is our ability to learn to reuse them across different environmental contexts, in part due to our understanding of attributes of variability in these environments. This thesis explores how the structure of models used within learning for robot control could similarly help autonomous robots cope with variability, hence achieving skill generalisation. The overarching approach is to develop modular architectures that judiciously combine different forms of inductive bias for learning. In particular, we consider how models and policies should be structured in order to achieve robust behaviour in the face of different factors of variation - in the environment, in objects and in other internal parameters of a policy - with the end goal of more robust, accurate and data-efficient skill acquisition and adaptation. At a high level, variability in skill is determined by variations in constraints presented by the external environment, and in task-specific perturbations that affect the specification of optimal action. A typical example of environmental perturbation would be variation in lighting and illumination, affecting the noise characteristics of perception. An example of task perturbations would be variation in object geometry, mass or friction, and in the specification of costs associated with speed or smoothness of execution. We counteract these factors of variation by exploring three forms of structuring: utilising separate data sets curated according to the relevant factor of variation, building neural network models that incorporate this factorisation into the very structure of the networks, and learning structured loss functions. The thesis is comprised of four projects exploring this theme within robotics planning and prediction tasks. Firstly, in the setting of trajectory prediction in crowded scenes, we explore a modular architecture for learning static and dynamic environmental structure. We show that factorising the prediction problem from the individual representations allows for robust and label efficient forward modelling, and relaxes the need for full model re-training in new environments. This modularity explicitly allows for a more flexible and interpretable adaptation of trajectory prediction models to using pre-trained state of the art models. We show that this results in more efficient motion prediction and allows for performance comparable to the state-of-the-art supervised 2D trajectory prediction. Next, in the domain of contact-rich robotic manipulation, we consider a modular architecture that combines model-free learning from demonstration, in particular dynamic movement primitives (DMP), with modern model-free reinforcement learning (RL), using both on-policy and off-policy approaches. We show that factorising the skill learning problem to skill acquisition and error correction through policy adaptation strategies such as residual learning can help improve the overall performance of policies in the context of contact-rich manipulation. Our empirical evaluation demonstrates how to best do this with DMPs and propose “residual Learning from Demonstration“ (rLfD), a framework that combines DMPs with RL to learn a residual correction policy. Our evaluations, performed both in simulation and on a physical system, suggest that applying residual learning directly in task space and operating on the full pose of the robot can significantly improve the overall performance of DMPs. We show that rLfD offers a gentle to the joints solution that improves the task success and generalisation of DMPs. Last but not least, our study shows that the extracted correction policies can be transferred to different geometries and frictions through few-shot task adaptation. Third, we employ meta learning to learn time-invariant reward functions, wherein both the objectives of a task (i.e., the reward functions) and the policy for performing that task optimally are learnt simultaneously. We propose a novel inverse reinforcement learning (IRL) formulation that allows us to 1) vary the length of execution by learning time-invariant costs, and 2) relax the temporal alignment requirements for learning from demonstration. We apply our method to two different types of cost formulations and evaluate their performance in the context of learning reward functions for simulated placement and peg in hole tasks executed on a 7DoF Kuka IIWA arm. Our results show that our approach enables learning temporally invariant rewards from misaligned demonstration that can also generalise spatially to out of distribution tasks. Finally, we employ our observations to evaluate adversarial robustness in the context of transfer learning from a source trained on CIFAR 100 to a target network trained on CIFAR 10. Specifically, we study the effects of using robust optimisation in the source and target networks. This allows us to identify transfer learning strategies under which adversarial defences are successfully retained, in addition to revealing potential vulnerabilities. We study the extent to which adversarially robust features can preserve their defence properties against black and white-box attacks under three different transfer learning strategies. Our empirical evaluations give insights on how well adversarial robustness under transfer learning can generalise.

    50 Years of quantum chromodynamics – Introduction and Review

    Get PDF

    Fundamentals

    Get PDF
    Volume 1 establishes the foundations of this new field. It goes through all the steps from data collection, their summary and clustering, to different aspects of resource-aware learning, i.e., hardware, memory, energy, and communication awareness. Machine learning methods are inspected with respect to resource requirements and how to enhance scalability on diverse computing architectures ranging from embedded systems to large computing clusters

    Probabilistically Rewired Message-Passing Neural Networks

    Full text link
    Message-passing graph neural networks (MPNNs) emerged as powerful tools for processing graph-structured input. However, they operate on a fixed input graph structure, ignoring potential noise and missing information. Furthermore, their local aggregation mechanism can lead to problems such as over-squashing and limited expressive power in capturing relevant graph structures. Existing solutions to these challenges have primarily relied on heuristic methods, often disregarding the underlying data distribution. Hence, devising principled approaches for learning to infer graph structures relevant to the given prediction task remains an open challenge. In this work, leveraging recent progress in exact and differentiable kk-subset sampling, we devise probabilistically rewired MPNNs (PR-MPNNs), which learn to add relevant edges while omitting less beneficial ones. For the first time, our theoretical analysis explores how PR-MPNNs enhance expressive power, and we identify precise conditions under which they outperform purely randomized approaches. Empirically, we demonstrate that our approach effectively mitigates issues like over-squashing and under-reaching. In addition, on established real-world datasets, our method exhibits competitive or superior predictive performance compared to traditional MPNN models and recent graph transformer architectures

    The Fifteenth Marcel Grossmann Meeting

    Get PDF
    The three volumes of the proceedings of MG15 give a broad view of all aspects of gravitational physics and astrophysics, from mathematical issues to recent observations and experiments. The scientific program of the meeting included 40 morning plenary talks over 6 days, 5 evening popular talks and nearly 100 parallel sessions on 71 topics spread over 4 afternoons. These proceedings are a representative sample of the very many oral and poster presentations made at the meeting.Part A contains plenary and review articles and the contributions from some parallel sessions, while Parts B and C consist of those from the remaining parallel sessions. The contents range from the mathematical foundations of classical and quantum gravitational theories including recent developments in string theory, to precision tests of general relativity including progress towards the detection of gravitational waves, and from supernova cosmology to relativistic astrophysics, including topics such as gamma ray bursts, black hole physics both in our galaxy and in active galactic nuclei in other galaxies, and neutron star, pulsar and white dwarf astrophysics. Parallel sessions touch on dark matter, neutrinos, X-ray sources, astrophysical black holes, neutron stars, white dwarfs, binary systems, radiative transfer, accretion disks, quasars, gamma ray bursts, supernovas, alternative gravitational theories, perturbations of collapsed objects, analog models, black hole thermodynamics, numerical relativity, gravitational lensing, large scale structure, observational cosmology, early universe models and cosmic microwave background anisotropies, inhomogeneous cosmology, inflation, global structure, singularities, chaos, Einstein-Maxwell systems, wormholes, exact solutions of Einstein's equations, gravitational waves, gravitational wave detectors and data analysis, precision gravitational measurements, quantum gravity and loop quantum gravity, quantum cosmology, strings and branes, self-gravitating systems, gamma ray astronomy, cosmic rays and the history of general relativity

    Towards structured neural spoken dialogue modelling.

    Get PDF
    195 p.In this thesis, we try to alleviate some of the weaknesses of the current approaches to dialogue modelling,one of the most challenging areas of Artificial Intelligence. We target three different types of dialogues(open-domain, task-oriented and coaching sessions), and use mainly machine learning algorithms to traindialogue models. One challenge of open-domain chatbots is their lack of response variety, which can betackled using Generative Adversarial Networks (GANs). We present two methodological contributions inthis regard. On the one hand, we develop a method to circumvent the non-differentiability of textprocessingGANs. On the other hand, we extend the conventional task of discriminators, which oftenoperate at a single response level, to the batch level. Meanwhile, two crucial aspects of task-orientedsystems are their understanding capabilities because they need to correctly interpret what the user islooking for and their constraints), and the dialogue strategy. We propose a simple yet powerful way toimprove spoken understanding and adapt the dialogue strategy by explicitly processing the user's speechsignal through audio-processing transformer neural networks. Finally, coaching dialogues shareproperties of open-domain and task-oriented dialogues. They are somehow task-oriented but, there is norush to complete the task, and it is more important to calmly converse to make the users aware of theirown problems. In this context, we describe our collaboration in the EMPATHIC project, where a VirtualCoach capable of carrying out coaching dialogues about nutrition was built, using a modular SpokenDialogue System. Second, we model such dialogues with an end-to-end system based on TransferLearning

    Discovering logical knowledge in non-symbolic domains

    Get PDF
    Deep learning and symbolic artificial intelligence remain the two main paradigms in Artificial Intelligence (AI), each presenting their own strengths and weaknesses. Artificial agents should integrate both of these aspects of AI in order to show general intelligence and solve complex problems in real-world scenarios; similarly to how humans use both the analytical left side and the intuitive right side of their brain in their lives. However, one of the main obstacles hindering this integration is the Symbol Grounding Problem [144], which is the capacity to map physical world observations to a set of symbols. In this thesis, we combine symbolic reasoning and deep learning in order to better represent and reason with abstract knowledge. In particular, we focus on solving non-symbolic-state Reinforcement Learning environments using a symbolic logical domain. We consider different configurations: (i) unknown knowledge of both the symbol grounding function and the symbolic logical domain, (ii) unknown knowledge of the symbol grounding function and prior knowledge of the domain, (iii) imperfect knowledge of the symbols grounding function and unknown knowledge of the domain. We develop algorithms and neural network architectures that are general enough to be applied to different kinds of environments, which we test on both continuous-state control problems and image-based environments. Specifically, we develop two kinds of architectures: one for Markovian RL tasks and one for non-Markovian RL domains. The first is based on model-based RL and representation learning, and is inspired by the substantial prior work in state abstraction for RL [115]. The second is mainly based on recurrent neural networks and continuous relaxations of temporal logic domains. In particular, the first approach extracts a symbolic STRIPS-like abstraction for control problems. For the second approach, we explore connections between recurrent neural networks and finite state machines, and we define Visual Reward Machines, an extension to non-symbolic domains of Reward Machines [27], which are a popular approach to non-Markovian RL tasks

    Abstraction and Refinement Techniques for Ternary Symbolic Simulation with Guard-value Encoding

    Get PDF
    We propose a novel encoding called guard-value encoding for the ternary domain {0, 1, X}. Among the advantages it has over the more conventional dual-rail encoding, the flexibility of representing X with either of or is especially important. We develop data abstraction and memory abstraction techniques based on the guard-value encoding. Our data abstraction reduces much more of the state space than conventional ternary abstraction's approach of over-approximating a set of Boolean values with a smaller set of ternary values. We also show how our data abstraction can enable bit-width reduction which helps further simplify verification problems. Our memory abstraction is applicable to any array of elements which makes it much more general than the existing memory abstraction techniques. We show how our memory abstraction can effectively reduce an array to just a few elements even when existing approaches are not applicable. We make extensive use of symbolic indexing to construct symbolic ternary values which are used in symbolic simulation. Lastly, we give a new perspective on refinement for ternary abstraction. Refinement is needed when too much information is lost due to use of the ternary domain such that the property is evaluated to the unknown X. We present a collection of new refinement approaches that distinguish themselves from existing ones by modifying the transition function instead of the initial ternary state and ternary stimulus. This way, our refinement either preserves the abstraction level or only degrades it slightly. We demonstrate our proposed techniques with a wide range of designs and properties. With data abstraction, we usually observe at least 10X improvement in verification time compared to Boolean verification algorithms such as Boolean Bounded Model Checking (BMC), as well as usually at least 2X and often 10X improvement over conventional ternary abstraction. Our memory abstraction significantly improves how the verification time scales with the design parameters and the depth (the number of cycles) of the verification. Our refinement approaches are also demonstrated to be much better than existing ones most of the time. For example, when verifying a property of a synthetic example based on a superscalar microprocessor's bypass paths, with our data abstraction, it takes 505 seconds while both of ternary abstraction and BMC time out at 1800 seconds. The bit-width reduction can further save 44 seconds and our memory abstraction can save 237 seconds. This verification problem requires refinement. If we substitute our refinement with an existing approach, the verification time with the data abstraction doubles

    Natural Language Processing: Emerging Neural Approaches and Applications

    Get PDF
    This Special Issue highlights the most recent research being carried out in the NLP field to discuss relative open issues, with a particular focus on both emerging approaches for language learning, understanding, production, and grounding interactively or autonomously from data in cognitive and neural systems, as well as on their potential or real applications in different domains
    • …
    corecore