2,682 research outputs found

    OpenCL Actors - Adding Data Parallelism to Actor-based Programming with CAF

    Full text link
    The actor model of computation has been designed for a seamless support of concurrency and distribution. However, it remains unspecific about data parallel program flows, while available processing power of modern many core hardware such as graphics processing units (GPUs) or coprocessors increases the relevance of data parallelism for general-purpose computation. In this work, we introduce OpenCL-enabled actors to the C++ Actor Framework (CAF). This offers a high level interface for accessing any OpenCL device without leaving the actor paradigm. The new type of actor is integrated into the runtime environment of CAF and gives rise to transparent message passing in distributed systems on heterogeneous hardware. Following the actor logic in CAF, OpenCL kernels can be composed while encapsulated in C++ actors, hence operate in a multi-stage fashion on data resident at the GPU. Developers are thus enabled to build complex data parallel programs from primitives without leaving the actor paradigm, nor sacrificing performance. Our evaluations on commodity GPUs, an Nvidia TESLA, and an Intel PHI reveal the expected linear scaling behavior when offloading larger workloads. For sub-second duties, the efficiency of offloading was found to largely differ between devices. Moreover, our findings indicate a negligible overhead over programming with the native OpenCL API.Comment: 28 page

    Improving the Performance and Energy Efficiency of GPGPU Computing through Adaptive Cache and Memory Management Techniques

    Get PDF
    Department of Computer Science and EngineeringAs the performance and energy efficiency requirement of GPGPUs have risen, memory management techniques of GPGPUs have improved to meet the requirements by employing hardware caches and utilizing heterogeneous memory. These techniques can improve GPGPUs by providing lower latency and higher bandwidth of the memory. However, these methods do not always guarantee improved performance and energy efficiency due to the small cache size and heterogeneity of the memory nodes. While prior works have proposed various techniques to address this issue, relatively little work has been done to investigate holistic support for memory management techniques. In this dissertation, we analyze performance pathologies and propose various techniques to improve memory management techniques. First, we investigate the effectiveness of advanced cache indexing (ACI) for high-performance and energy-efficient GPGPU computing. Specifically, we discuss the designs of various static and adaptive cache indexing schemes and present implementation for GPGPUs. We then quantify and analyze the effectiveness of the ACI schemes based on a cycle-accurate GPGPU simulator. Our quantitative evaluation shows that ACI schemes achieve significant performance and energy-efficiency gains over baseline conventional indexing scheme. We also analyze the performance sensitivity of ACI to key architectural parameters (i.e., capacity, associativity, and ICN bandwidth) and the cache indexing latency. We also demonstrate that ACI continues to achieve high performance in various settings. Second, we propose IACM, integrated adaptive cache management for high-performance and energy-efficient GPGPU computing. Based on the performance pathology analysis of GPGPUs, we integrate state-of-the-art adaptive cache management techniques (i.e., cache indexing, bypassing, and warp limiting) in a unified architectural framework to eliminate performance pathologies. Our quantitative evaluation demonstrates that IACM significantly improves the performance and energy efficiency of various GPGPU workloads over the baseline architecture (i.e., 98.1% and 61.9% on average, respectively) and achieves considerably higher performance than the state-of-the-art technique (i.e., 361.4% at maximum and 7.7% on average). Furthermore, IACM delivers significant performance and energy efficiency gains over the baseline GPGPU architecture even when enhanced with advanced architectural technologies (e.g., higher capacity, associativity). Third, we propose bandwidth- and latency-aware page placement (BLPP) for GPGPUs with heterogeneous memory. BLPP analyzes the characteristics of a application and determines the optimal page allocation ratio between the GPU and CPU memory. Based on the optimal page allocation ratio, BLPP dynamically allocate pages across the heterogeneous memory nodes. Our experimental results show that BLPP considerably outperforms the baseline and state-of-the-art technique (i.e., 13.4% and 16.7%) and performs similar to the static-best version (i.e., 1.2% difference), which requires extensive offline profiling.clos

    Preemptive Thread Block Scheduling with Online Structural Runtime Prediction for Concurrent GPGPU Kernels

    Full text link
    Recent NVIDIA Graphics Processing Units (GPUs) can execute multiple kernels concurrently. On these GPUs, the thread block scheduler (TBS) uses the FIFO policy to schedule their thread blocks. We show that FIFO leaves performance to chance, resulting in significant loss of performance and fairness. To improve performance and fairness, we propose use of the preemptive Shortest Remaining Time First (SRTF) policy instead. Although SRTF requires an estimate of runtime of GPU kernels, we show that such an estimate of the runtime can be easily obtained using online profiling and exploiting a simple observation on GPU kernels' grid structure. Specifically, we propose a novel Structural Runtime Predictor. Using a simple Staircase model of GPU kernel execution, we show that the runtime of a kernel can be predicted by profiling only the first few thread blocks. We evaluate an online predictor based on this model on benchmarks from ERCBench, and find that it can estimate the actual runtime reasonably well after the execution of only a single thread block. Next, we design a thread block scheduler that is both concurrent kernel-aware and uses this predictor. We implement the SRTF policy and evaluate it on two-program workloads from ERCBench. SRTF improves STP by 1.18x and ANTT by 2.25x over FIFO. When compared to MPMax, a state-of-the-art resource allocation policy for concurrent kernels, SRTF improves STP by 1.16x and ANTT by 1.3x. To improve fairness, we also propose SRTF/Adaptive which controls resource usage of concurrently executing kernels to maximize fairness. SRTF/Adaptive improves STP by 1.12x, ANTT by 2.23x and Fairness by 2.95x compared to FIFO. Overall, our implementation of SRTF achieves system throughput to within 12.64% of Shortest Job First (SJF, an oracle optimal scheduling policy), bridging 49% of the gap between FIFO and SJF.Comment: 14 pages, full pre-review version of PACT 2014 poste

    CU2CL: A CUDA-to-OpenCL Translator for Multi- and Many-core Architectures

    Get PDF
    The use of graphics processing units (GPUs) in high-performance parallel computing continues to become more prevalent, often as part of a heterogeneous system. For years, CUDA has been the de facto programming environment for nearly all general-purpose GPU (GPGPU) applications. In spite of this, the framework is available only on NVIDIA GPUs, traditionally requiring reimplementation in other frameworks in order to utilize additional multi- or many-core devices. On the other hand, OpenCL provides an open and vendorneutral programming environment and runtime system. With implementations available for CPUs, GPUs, and other types of accelerators, OpenCL therefore holds the promise of a “write once, run anywhere” ecosystem for heterogeneous computing. Given the many similarities between CUDA and OpenCL, manually porting a CUDA application to OpenCL is typically straightforward, albeit tedious and error-prone. In response to this issue, we created CU2CL, an automated CUDA-to- OpenCL source-to-source translator that possesses a novel design and clever reuse of the Clang compiler framework. Currently, the CU2CL translator covers the primary constructs found in CUDA runtime API, and we have successfully translated many applications from the CUDA SDK and Rodinia benchmark suite. The performance of our automatically translated applications via CU2CL is on par with their manually ported countparts

    Contract-Based General-Purpose GPU Programming

    Get PDF
    Using GPUs as general-purpose processors has revolutionized parallel computing by offering, for a large and growing set of algorithms, massive data-parallelization on desktop machines. An obstacle to widespread adoption, however, is the difficulty of programming them and the low-level control of the hardware required to achieve good performance. This paper suggests a programming library, SafeGPU, that aims at striking a balance between programmer productivity and performance, by making GPU data-parallel operations accessible from within a classical object-oriented programming language. The solution is integrated with the design-by-contract approach, which increases confidence in functional program correctness by embedding executable program specifications into the program text. We show that our library leads to modular and maintainable code that is accessible to GPGPU non-experts, while providing performance that is comparable with hand-written CUDA code. Furthermore, runtime contract checking turns out to be feasible, as the contracts can be executed on the GPU

    Enabling GPU Support for the COMPSs-Mobile Framework

    Get PDF
    Using the GPUs embedded in mobile devices allows for increasing the performance of the applications running on them while reducing the energy consumption of their execution. This article presents a task-based solution for adaptative, collaborative heterogeneous computing on mobile cloud environments. To implement our proposal, we extend the COMPSs-Mobile framework – an implementation of the COMPSs programming model for building mobile applications that offload part of the computation to the Cloud – to support offloading computation to GPUs through OpenCL. To evaluate our solution, we subject the prototype to three benchmark applications representing different application patterns.This work is partially supported by the Joint-Laboratory on Extreme Scale Computing (JLESC), by the European Union through the Horizon 2020 research and innovation programme under contract 687584 (TANGO Project), by the Spanish Goverment (TIN2015-65316-P, BES-2013-067167, EEBB-2016-11272, SEV-2011-00067) and the Generalitat de Catalunya (2014-SGR-1051).Peer ReviewedPostprint (author's final draft
    corecore