337 research outputs found

    Guarded Evaluation: An Algorithm for Dynamic Power Reduction in FPGAs

    Get PDF
    Guarded evaluation is a power reduction technique that involves identifying sub-circuits (within a larger circuit) whose inputs can be held constant (guarded) at specific times during circuit operation, thereby reducing switching activity and lowering dynamic power. The concept is rooted in the property that under certain conditions, some signals within digital designs are not "observable" at design outputs, making the circuitry that generates such signals a candidate for guarding. Guarded evaluation has been demonstrated successfully for custom ASICs; in this work, we apply the technique to FPGAs. In ASICs, guarded evaluation entails adding additional hardware to the design, increasing silicon area and cost. Here, we apply the technique in a way that imposes minimal area overhead by leveraging existing unused circuitry within the FPGA. The LUT functionality is modified to incorporate the guards and reduce toggle rates. The primary challenge in guarded evaluation is in determining the specific conditions under which a sub-circuit's inputs can be held constant without impacting the larger circuit's functional correctness. We propose a simple solution to this problem based on discovering gating inputs using "non-inverting paths" and trimming inputs using "partial non-inverting paths" in the circuit's AND-Inverter graph representation. Experimental results show that guarded evaluation can reduce switching activity by as much as 32% for FPGAs with 6-LUT architectures and 25% for 4-LUT architectures, on average, and can reduce power consumption in the FPGA interconnect by 29% for 6-LUTs and 27% for 4-LUTs. A clustered architecture with four LUTs to a cluster and ten LUTs to a cluster produced the best power reduction results. We implement guarded evaluation at various stages of the FPGA CAD flow and analyze the reductions. We implement the algorithm as post technology mapping, post packing and post placement optimizations. Guarded Evaluation as a post technology mapping algorithm inserted the most number of guards and hence achieved the highest activity and interconnect reduction. However, guarding signals come with a cost of increased fanout and stress on routing resources. Packing and placement provides the algorithm with additional information of the circuit which is leveraged to insert high quality guards with minimal impact on routing. Experimental results show that post-packing and post-placement methods have comparable reductions to post-mapping with considerably lesser impact on the critical path delay and routability of the circuit

    Design and Implementation of High QoS 3D-NoC using Modified Double Particle Swarm Optimization on FPGA

    Get PDF
    One technique to overcome the exponential growth bottleneck is to increase the number of cores on a processor, although having too many cores might cause issues including chip overheating and communication blockage. The problem of the communication bottleneck on the chip is presently effectively resolved by networks-on-chip (NoC). A 3D stack of chips is now possible, thanks to recent developments in IC manufacturing techniques, enabling to reduce of chip area while increasing chip throughput and reducing power consumption. The automated process associated with mapping applications to form three-dimensional NoC architectures is a significant new path in 3D NoC research. This work proposes a 3D NoC partitioning approach that can identify the 3D NoC region that has to be mapped. A double particle swarm optimization (DPSO) inspired algorithmic technique, which may combine the characteristics having neighbourhood search and genetic architectures, also addresses the challenge of a particle swarm algorithm descending into local optimal solutions. Experimental evidence supports the claim that this hybrid optimization algorithm based on Double Particle Swarm Optimisation outperforms the conventional heuristic technique in terms of output rate and loss in energy. The findings demonstrate that in a network of the same size, the newly introduced router delivers the lowest loss on the longest path.  Three factors, namely energy, latency or delay, and throughput, are compared between the suggested 3D mesh ONoC and its 2D version. When comparing power consumption between 3D ONoC and its electronic and 2D equivalents, which both have 512 IP cores, it may save roughly 79.9% of the energy used by the electronic counterpart and 24.3% of the energy used by the latter. The network efficiency of the 3D mesh ONoC is simulated by DPSO in a variety of configurations. The outcomes also demonstrate an increase in performance over the 2D ONoC. As a flexible communication solution, Network-On-Chips (NoCs) have been frequently employed in the development of multiprocessor system-on-chips (MPSoCs). By outsourcing their communication activities, NoCs permit on-chip Intellectual Property (IP) cores to communicate with one another and function at a better level. The important components in assigning application duties, distributing the work to the IPs, and coordinating communication among them are mapping and scheduling methods. This study aims to present an entirely advanced form of research in the area of 3D NoC mapping and scheduling applications, grouping the results according to various parameters and offering several suggestions for further research

    New FPGA design tools and architectures

    Get PDF

    FieldPlacer - A flexible, fast and unconstrained force-directed placement method for heterogeneous reconfigurable logic architectures

    Get PDF
    The field of placement methods for components of integrated circuits, especially in the domain of reconfigurable chip architectures, is mainly dominated by a handful of concepts. While some of these are easy to apply but difficult to adapt to new situations, others are more flexible but rather complex to realize. This work presents the FieldPlacer framework, a flexible, fast and unconstrained force-directed placement method for heterogeneous reconfigurable logic architectures, in particular for the ever important heterogeneous FPGAs. In contrast to many other force-directed placers, this approach is called ‘unconstrained’ as it does not require a priori fixed logic elements in order to calculate a force equilibrium as the solution to a system of equations. Instead, it is based on a free spring embedder simulation of a graph representation which includes all logic block types of a design simultaneously. The FieldPlacer framework offers a huge amount of flexibility in applying different distance norms (e. g., the Manhattan distance) for the force-directed layout and aims at creating adapted layouts for various objective functions, e. g., highest performance or improved routability. Depending on the individual situation, a runtime-quality trade-off can be considered to either produce a decent placement in a very short time or to generate an exceptionally good placement, which takes longer. An extensive comparison with the latest simulated annealing placement method from the well-known Versatile Place and Route (VPR) framework shows that the FieldPlacer approach can create placements of comparable quality much faster than VPR or, alternatively, generate better placements in the same time. The flexibility in defining arbitrary objective functions and the intuitive adaptability of the method, which, among others, includes different concepts from the field of graph drawing, should facilitate further developments with this framework, e. g., for new upcoming optimization targets like the energy consumption of an implemented design

    CAD methodologies for low power and reliable 3D ICs

    Get PDF
    The main objective of this dissertation is to explore and develop computer-aided-design (CAD) methodologies and optimization techniques for reliability, timing performance, and power consumption of through-silicon-via(TSV)-based and monolithic 3D IC designs. The 3D IC technology is a promising answer to the device scaling and interconnect problems that industry faces today. Yet, since multiple dies are stacked vertically in 3D ICs, new problems arise such as thermal, power delivery, and so on. New physical design methodologies and optimization techniques should be developed to address the problems and exploit the design freedom in 3D ICs. Towards the objective, this dissertation includes four research projects. The first project is on the co-optimization of traditional design metrics and reliability metrics for 3D ICs. It is well known that heat removal and power delivery are two major reliability concerns in 3D ICs. To alleviate thermal problem, two possible solutions have been proposed: thermal-through-silicon-vias (T-TSVs) and micro-fluidic-channel (MFC) based cooling. For power delivery, a complex power distribution network is required to deliver currents reliably to all parts of the 3D IC while suppressing the power supply noise to an acceptable level. However, these thermal and power networks pose major challenges in signal routability and congestion. In this project, a co-optimization methodology for signal, power, and thermal interconnects in 3D ICs is presented. The goal of the proposed approach is to improve signal, thermal, and power noise metrics and to provide fast and accurate design space explorations for early design stages. The second project is a study on 3D IC partition. For a 3D IC, the target circuit needs to be partitioned into multiple parts then mapped onto the dies. The partition style impacts design quality such as footprint, wirelength, timing, and so on. In this project, the design methodologies of 3D ICs with different partition styles are demonstrated. For the LEON3 multi-core microprocessor, three partitioning styles are compared: core-level, block-level, and gate-level. The design methodologies for such partitioning styles and their implications on the physical layout are discussed. Then, to perform timing optimizations for 3D ICs, two timing constraint generation methods are demonstrated that lead to different design quality. The third project is on the buffer insertion for timing optimization of 3D ICs. For high performance 3D ICs, it is crucial to perform thorough timing optimizations. Among timing optimization techniques, buffer insertion is known to be the most effective way. The TSVs have a large parasitic capacitance that increases the signal slew and the delay on the downstream. In this project, a slew-aware buffer insertion algorithm is developed that handles full 3D nets and considers TSV parasitics and slew effects on delay. Compared with the well-known van Ginneken algorithm and a commercial tool, the proposed algorithm finds buffering solutions with lower delay values and acceptable runtime overhead. The last project is on the ultra-high-density logic designs for monolithic 3D ICs. The nano-scale 3D interconnects available in monolithic 3D IC technology enable ultra-high-density device integration at the individual transistor-level. The benefits and challenges of monolithic 3D integration technology for logic designs are investigated. First, a 3D standard cell library for transistor-level monolithic 3D ICs is built and their timing and power behavior are characterized. Then, various interconnect options for monolithic 3D ICs that improve design quality are explored. Next, timing-closed, full-chip GDSII layouts are built and iso-performance power comparisons with 2D IC designs are performed. Important design metrics such as area, wirelength, timing, and power consumption are compared among transistor-level monolithic 3D, gate-level monolithic 3D, TSV-based 3D, and traditional 2D designs.PhDCommittee Chair: Lim, Sung Kyu; Committee Member: Bakir, Muhannad; Committee Member: Kim, Hyesoon; Committee Member: Lee, Hsien-Hsin; Committee Member: Mukhopadhyay, Saiba
    • …
    corecore