92 research outputs found

    A fault-tolerant routing strategy for k-ary n-direct s-indirect topologies based on intermediate nodes

    Full text link
    [EN] Exascale computing systems are being built with thousands of nodes. The high number of components of these systems significantly increases the probability of failure. A key component for them is the interconnection network. If failures occur in the interconnection network, they may isolate a large fraction of the machine. For this reason, an efficient fault-tolerant mechanism is needed to keep the system interconnected, even in the presence of faults. A recently proposed topology for these large systems is the hybrid k-ary n-direct s-indirect family that provides optimal performance and connectivity at a reduced hardware cost. This paper presents a fault-tolerant routing methodology for the k-ary n-direct s-indirect topology that degrades performance gracefully in presence of faults and tolerates a large number of faults without disabling any healthy computing node. In order to tolerate network failures, the methodology uses a simple mechanism. For any source-destination pair, if necessary, packets are forwarded to the destination node through a set of intermediate nodes (without being ejected from the network) with the aim of circumventing faults. The evaluation results shows that the proposed methodology tolerates a large number of faults. For instance, it is able to tolerate more than 99.5% of fault combinations when there are 10 faults in a 3-D network with 1000 nodes using only 1 intermediate node and more than 99.98% if 2 intermediate nodes are used. Furthermore, the methodology offers a gracious performance degradation. As an example, performance degrades only by 1% for a 2-D network with 1024 nodes and 1% faulty links.This work was supported by the Spanish Ministerio de Economía y Competitividad (MINECO), by FEDER funds under Grant TIN2015-66972-C5-1-R, by Programa de Ayudas de Investigación y Desarrollo (PAID) from Universitat Politècnica de alència and by the financial support of the FP7 HiPEAC Network of Excellence under grant agreement 287759Peñaranda Cebrián, R.; Gómez Requena, ME.; López Rodríguez, PJ.; Gran, EG.; Skeie, T. (2017). A fault-tolerant routing strategy for k-ary n-direct s-indirect topologies based on intermediate nodes. Concurrency and Computation Practice and Experience. 29(13):1-11. https://doi.org/10.1002/cpe.4065S111291

    A multipath routing method for tolerating permanent and non-permanent faults

    Get PDF
    The intensive and continuous use of high-performance computers for executing computationally intensive applications, coupled with the large number of elements that make them up, dramatically increase the likelihood of failures during their operation. The interconnection network is a critical part of such systems, therefore, network faults have an extremely high impact because most routing algorithms are not designed to tolerate faults. In such algorithms, just a single fault may stall messages in the network, preventing the finalization of applications, or may lead to deadlocked confi gurations. This work focuses on the problem of fault tolerance for high-speed interconnection networks by designing a fault-tolerant routing method to solve an unbounded number of dynamic faults (permanent and non- permanent). To accomplish this task we take advantage of the communication path redundancy, by means of a multipath routing approach. Experiments show that our method allows applications to finalize their execution in the presence of several number of faults, with an average performance value of 97% compared to the fault-free scenarios.Presentado en el IX Workshop Procesamiento Distribuido y Paralelo (WPDP)Red de Universidades con Carreras en Informática (RedUNCI

    New Fault Tolerant Multicast Routing Techniques to Enhance Distributed-Memory Systems Performance

    Get PDF
    Distributed-memory systems are a key to achieve high performance computing and the most favorable architectures used in advanced research problems. Mesh connected multicomputer are one of the most popular architectures that have been implemented in many distributed-memory systems. These systems must support communication operations efficiently to achieve good performance. The wormhole switching technique has been widely used in design of distributed-memory systems in which the packet is divided into small flits. Also, the multicast communication has been widely used in distributed-memory systems which is one source node sends the same message to several destination nodes. Fault tolerance refers to the ability of the system to operate correctly in the presence of faults. Development of fault tolerant multicast routing algorithms in 2D mesh networks is an important issue. This dissertation presents, new fault tolerant multicast routing algorithms for distributed-memory systems performance using wormhole routed 2D mesh. These algorithms are described for fault tolerant routing in 2D mesh networks, but it can also be extended to other topologies. These algorithms are a combination of a unicast-based multicast algorithm and tree-based multicast algorithms. These algorithms works effectively for the most commonly encountered faults in mesh networks, f-rings, f-chains and concave fault regions. It is shown that the proposed routing algorithms are effective even in the presence of a large number of fault regions and large size of fault region. These algorithms are proved to be deadlock-free. Also, the problem of fault regions overlap is solved. Four essential performance metrics in mesh networks will be considered and calculated; also these algorithms are a limited-global-information-based multicasting which is a compromise of local-information-based approach and global-information-based approach. Data mining is used to validate the results and to enlarge the sample. The proposed new multicast routing techniques are used to enhance the performance of distributed-memory systems. Simulation results are presented to demonstrate the efficiency of the proposed algorithms

    Efficient mechanisms to provide fault tolerance in interconnection networks for pc clusters

    Full text link
    Actualmente, los clusters de PC son un alternativa rentable a los computadores paralelos. En estos sistemas, miles de componentes (procesadores y/o discos duros) se conectan a través de redes de interconexión de altas prestaciones. Entre las tecnologías de red actualmente disponibles para construir clusters, InfiniBand (IBA) ha emergido como un nuevo estándar de interconexión para clusters. De hecho, ha sido adoptado por muchos de los sistemas más potentes construidos actualmente (lista top500). A medida que el número de nodos aumenta en estos sistemas, la red de interconexión también crece. Junto con el aumento del número de componentes la probabilidad de averías aumenta dramáticamente, y así, la tolerancia a fallos en el sistema en general, y de la red de interconexión en particular, se convierte en una necesidad. Desafortunadamente, la mayor parte de las estrategias de encaminamiento tolerantes a fallos propuestas para los computadores masivamente paralelos no pueden ser aplicadas porque el encaminamiento y las transiciones de canal virtual son deterministas en IBA, lo que impide que los paquetes eviten los fallos. Por lo tanto, son necesarias nuevas estrategias para tolerar fallos. Por ello, esta tesis se centra en proporcionar los niveles adecuados de tolerancia a fallos a los clusters de PC, y en particular a las redes IBA. En esta tesis proponemos y evaluamos varios mecanismos adecuados para las redes de interconexión para clusters. El primer mecanismo para proporcionar tolerancia a fallos en IBA (al que nos referimos como encaminamiento tolerante a fallos basado en transiciones; TFTR) consiste en usar varias rutas disjuntas entre cada par de nodos origen-destino y seleccionar la ruta apropiada en el nodo fuente usando el mecanismo APM proporcionado por IBA. Consiste en migrar las rutas afectadas por el fallo a las rutas alternativas sin fallos. Sin embargo, con este fin, es necesario un algoritmo eficiente de encaminamiento capaz de proporcionar suficientesMontañana Aliaga, JM. (2008). Efficient mechanisms to provide fault tolerance in interconnection networks for pc clusters [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/2603Palanci

    On the Potential of NoC Virtualization for Multicore Chips

    Full text link

    A multipath routing method for tolerating permanent and non-permanent faults

    Get PDF
    The intensive and continuous use of high-performance computers for executing computationally intensive applications, coupled with the large number of elements that make them up, dramatically increase the likelihood of failures during their operation. The interconnection network is a critical part of such systems, therefore, network faults have an extremely high impact because most routing algorithms are not designed to tolerate faults. In such algorithms, just a single fault may stall messages in the network, preventing the finalization of applications, or may lead to deadlocked confi gurations. This work focuses on the problem of fault tolerance for high-speed interconnection networks by designing a fault-tolerant routing method to solve an unbounded number of dynamic faults (permanent and non- permanent). To accomplish this task we take advantage of the communication path redundancy, by means of a multipath routing approach. Experiments show that our method allows applications to finalize their execution in the presence of several number of faults, with an average performance value of 97% compared to the fault-free scenarios.Presentado en el IX Workshop Procesamiento Distribuido y Paralelo (WPDP)Red de Universidades con Carreras en Informática (RedUNCI

    Segment-based routing: an efficient fault-tolerant routing algorithm for meshes and tori

    Full text link
    Computers get faster every year, but the demand for computing resources seems to grow at an even faster rate. Depending on the problem domain, this demand for more power can be satisfied by either, massively parallel com-puters, or clusters of computers. Common for both ap-proaches is the dependence on high performance intercon-nect networks such as Myrinet, Infiniband, or 10 Giga-bit Ethernet. While high throughput and low latency are key features of interconnection networks, the issue of fault-tolerance is now becoming increasingly important. As the number of network components grows so does the probabil-ity for failure, thus it becomes important to also consider the fault-tolerance mechanism of interconnection networks. The main challenge then lies in combining performance and fault-tolerance, while still keeping cost and complexity low. This paper proposes a new deterministic routing method-ology for tori and meshes, which achieves high performance without the use of virtual channels. Furthermore, it is topol-ogy agnostic in nature, meaning it can handle any topol-ogy derived from any combination of faults when combined with static reconfiguration. The algorithm, referred to as Segment-based Routing (SR), works by partitioning a topol-ogy into subnets, and subnets into segments. This allows us to place bidirectional turn restrictions locally within a seg-ment. As segments are independent, we gain the freedom to place turn restrictions within a segment independently from other segments. This results in a larger degree of freedom when placing turn restrictions compared to other routing strategies. In this paper a way to compute segment-based routing tables is presented and applied to meshes and tori. Evalua-tion results show that SR increases performance by a factor of 1.8 over FX and up*/down * routing. ∗This work was supported by the Spanish CICYT under Gran

    Topology Agnostic Methods for Routing, Reconfiguration and Virtualization of Interconnection Networks

    Get PDF
    Modern computing systems, such as supercomputers, data centers and multicore chips, generally require efficient communication between their different system units; tolerance towards component faults; flexibility to expand or merge; and a high utilization of their resources. Interconnection networks are used in a variety of such computing systems in order to enable communication between their diverse system units. Investigation and proposal of new or improved solutions to topology agnostic routing and reconfiguration of interconnection networks are main objectives of this thesis. In addition, topology agnostic routing and reconfiguration algorithms are utilized in the development of new and flexible approaches to processor allocation. The thesis aims to present versatile solutions that can be used for the interconnection networks of a number of different computing systems. No particular routing algorithm was specified for an interconnection network technology which is now incorporated in Dolphin Express. The thesis states a set of criteria for a suitable routing algorithm, evaluates a number of existing routing algorithms, and recommend that one of the algorithms – which fulfils all of the criteria – is used. Further investigations demonstrate how this routing algorithm inherently supports fault-tolerance, and how it can be optimized for some network topologies. These considerations are also relevant for the InfiniBand interconnection network technology. Reconfiguration of interconnection networks (change of routing function) is a deadlock prone process. Some existing reconfiguration strategies include deadlock avoidance mechanisms that significantly reduce the network service offered to running applications. The thesis expands the area of application for one of the most versatile and efficient reconfiguration algorithms available in the literature, and proposes an optimization of this algorithm that improves the network service offered to running applications. Moreover, a new reconfiguration algorithm is presented that supports a replacement of the routing function without causing performance penalties. Processor allocation strategies that guarantee traffic-containment commonly pose strict requirements on the shape of partitions, and thus achieve only a limited utilization of a system’s computing resources. The thesis introduces two new approaches that are more flexible. Both approaches utilize the properties of a topology agnostic routing algorithm in order to enforce traffic-containment within arbitrarily shaped partitions. Consequently, a high resource utilization as well as isolation of traffic between different partitions is achieved

    Low-Memory Techniques for Routing and Fault-Tolerance on the Fat-Tree Topology

    Full text link
    Actualmente, los clústeres de PCs están considerados como una alternativa eficiente a la hora de construir supercomputadores en los que miles de nodos de computación se conectan mediante una red de interconexión. La red de interconexión tiene que ser diseñada cuidadosamente, puesto que tiene una gran influencia sobre las prestaciones globales del sistema. Dos de los principales parámetros de diseño de las redes de interconexión son la topología y el encaminamiento. La topología define la interconexión de los elementos de la red entre sí, y entre éstos y los nodos de computación. Por su parte, el encaminamiento define los caminos que siguen los paquetes a través de la red. Las prestaciones han sido tradicionalmente la principal métrica a la hora de evaluar las redes de interconexión. Sin embargo, hoy en día hay que considerar dos métricas adicionales: el coste y la tolerancia a fallos. Las redes de interconexión además de escalar en prestaciones también deben hacerlo en coste. Es decir, no sólo tienen que mantener su productividad conforme aumenta el tamaño de la red, sino que tienen que hacerlo sin incrementar sobremanera su coste. Por otra parte, conforme se incrementa el número de nodos en las máquinas de tipo clúster, la red de interconexión debe crecer en concordancia. Este incremento en el número de elementos de la red de interconexión aumenta la probabilidad de aparición de fallos, y por lo tanto, la tolerancia a fallos es prácticamente obligatoria para las redes de interconexión actuales. Esta tesis se centra en la topología fat-tree, ya que es una de las topologías más comúnmente usadas en los clústeres. El objetivo de esta tesis es aprovechar sus características particulares para proporcionar tolerancia a fallos y un algoritmo de encaminamiento capaz de equilibrar la carga de la red proporcionando una buena solución de compromiso entre las prestaciones y el coste.Gómez Requena, C. (2010). Low-Memory Techniques for Routing and Fault-Tolerance on the Fat-Tree Topology [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/8856Palanci
    corecore