154 research outputs found

    Metaheuristics Techniques for Cluster Head Selection in WSN: A Survey

    Get PDF
    In recent years, Wireless sensor communication is growing expeditiously on the capability to gather information, communicate and transmit data effectively. Clustering is the main objective of improving the network lifespan in Wireless sensor network. It includes selecting the cluster head for each cluster in addition to grouping the nodes into clusters. The cluster head gathers data from the normal nodes in the cluster, and the gathered information is then transmitted to the base station. However, there are many reasons in effect opposing unsteady cluster head selection and dead nodes. The technique for selecting a cluster head takes into factors to consider including residual energy, neighbors’ nodes, and the distance between the base station to the regular nodes. In this study, we thoroughly investigated by number of methods of selecting a cluster head and constructing a cluster. Additionally, a quick performance assessment of the techniques' performance is given together with the methods' criteria, advantages, and future directions

    A Brief Survey on Cluster based Energy Efficient Routing Protocols in IoT based Wireless Sensor Networks

    Get PDF
    The wireless sensor network (WSN) consists of a large number of randomly distributed nodes capable of detecting environmental data, converting it into a suitable format, and transmitting it to the base station. The most essential issue in WSNs is energy consumption, which is mostly dependent on the energy-efficient clustering and data transfer phases. We compared a variety of algorithms for clustering that balance the number of clusters. The cluster head selection protocol is arbitrary and incorporates energy-conscious considerations. In this survey, we compared different types of energy-efficient clustering-based protocols to determine which one is effective for lowering energy consumption, latency and extending the lifetime of wireless sensor networks (WSN) under various scenarios

    Energy efficient organization and modeling of wireless sensor networks

    Get PDF
    With their focus on applications requiring tight coupling with the physical world, as opposed to the personal communication focus of conventional wireless networks, wireless sensor networks pose significantly different design, implementation and deployment challenges. Wireless sensor networks can be used for environmental parameter monitoring, boundary surveillance, target detection and classification, and the facilitation of the decision making process. Multiple sensors provide better monitoring capabilities about parameters that present both spatial and temporal variances, and can deliver valuable inferences about the physical world to the end user. In this dissertation, the problem of the energy efficient organization and modeling of dynamic wireless sensor networks is investigated and analyzed. First, a connectivity distribution model that characterizes the corresponding sensor connectivity distribution for a multi-hop sensor networking system is introduced. Based on this model, the impact of node connectivity on system reliability is analyzed, and several tradeoffs among various sleeping strategies, node connectivity and power consumption, are evaluated. Motivated by the commonality encountered in the mobile sensor wireless networks, their self-organizing and random nature, and some concepts developed by the continuum theory, a model is introduced that gives a more realistic description of the various processes and their effects on a large-scale topology as the mobile wireless sensor network evolves. Furthermore, the issue of developing an energy-efficient organization and operation of a randomly deployed multi-hop sensor network, by extending the lifetime of the communication critical nodes and as a result the overall network\u27s operation, is considered and studied. Based on the data-centric characteristic of wireless sensor networks, an efficient Quality of Service (QoS)-constrained data aggregation and processing approach for distributed wireless sensor networks is investigated and analyzed. One of the key features of the proposed approach is that the task QoS requirements are taken into account to determine when and where to perform the aggregation in a distributed fashion, based on the availability of local only information. Data aggregation is performed on the fly at intermediate sensor nodes, while at the same time the end-to-end latency constraints are satisfied. An analytical model to represent the data aggregation and report delivery process in sensor networks, with specific delivery quality requirements in terms of the achievable end-to-end delay and the successful report delivery probability, is also presented. Based on this model, some insights about the impact on the achievable system performance, of the various designs parameters and the tradeoffs involved in the process of data aggregation and the proposed strategy, are gained. Furthermore, a localized adaptive data collection algorithm performed at the source nodes is developed that balances the design tradeoffs of delay, measurement accuracy and buffer overflow, for given QoS requirements. The performance of the proposed approach is analyzed and evaluated, through modeling and simulation, under different data aggregation scenarios and traffic loads. The impact of several design parameters and tradeoffs on various critical network and application related performance metrics, such as energy efficiency, network lifetime, end-to-end latency, and data loss are also evaluated and discussed

    DESIGN ISSUES HOMOGENEOUS NETWORKS

    Get PDF
    WSN has evolved thanks to availability of sensors that are cheaper and intelligent but these are having battery support. So, one among the main issues in WSN is maximization of network life. Homogeneous WSNs have the potential to enhance network life time and also provide higher quality networking and system services than the homogeneous WSN. Routing is that the main concern of energy consumption in WSN. Previous research shows that performance of the network are often improve significantly using protocol of hierarchical HWSN. However, the appropiateness of a specific routing protocol mainly depends on the capabilities of the nodes and on the appliance requirements. This study presents different features of the homogeneous wireless sensor network and the style issues for routing in a homogeneous environment. Different perspectives from different authors regarding energy efficiency supported resource homogeneous for homogeneous wireless sensor networks are presented

    NM-LEACH: A Novel Modified LEACH Protocol to Improve Performance in WSN

    Get PDF
    Saving energy and improving the lifetime of wireless sensor networks (WSNs) has remained as a key research challenge for some time. Low-energy adaptive clustering hierarchy (LEACH), a classical protocol is designed originally for the purpose of reducing and balancing the network’s energy consumption. However, as the distances between the cluster head (CH) and the member nodes are not taken into consideration, it results in the uneven distribution of the clusters and uneven consumption of the energy in the network. Choosing the CHs with no distinction is an issue as well. Based on the original algorithm, a novel modified LEACH (NM-LEACH) has been proposed, considering critical problems that exist in the network. NM-LEACH protocol is capable of reasonably solving the number of the CHs in each round and takes the energy as a factor of weight under consideration in selecting the CH. The proposed protocol enhances performance by extending the WSN lifecycle, which results in increasing the balance of the energy consumption in the network, and improving the efficiency of the network

    Improved LEACH Protocol based on Moth Flame Optimization Algorithm for Wireless Sensor Networks

    Get PDF
    Wireless sensor nodes are made up of small electronic devices designed for detecting, determining, and sending data under severe physical conditions. These sensor nodes rely heavily on batteries for energy, which drain at a quicker pace due to the extensive communication and processing tasks they must carry out. Managing this battery resource is the major challenge in wireless sensor networks (WSNs). This work aims at developing an improved performance and energy-efficient low-energy adaptive clustering hierarchy (IPE-LEACH) that can extend the lifespan of networks. This paper proposes a novel LEACH protocol that uses the moth flame optimization (MFO) algorithm for clustering and routing to increase the longevity of the sensor network. IPE-LEACH proved to have a better cluster-head (CH) selection technique by eliminating redundant data, thereby extending the network lifetime. IPE-LEACH was compared with four other existing algorithms, and it performed better than: original LEACH by 60%, EiP-LEACH by 45%, LEACH-GA by 58%, and LEACH-PSO by 13.8%. It can therefore be concluded that IPE-LEACH is a promising clustering algorithm that has the potential to realize high flexibility in WSNs in case the CH fails.     

    Integrated placement and routing of relay nodes for fault-tolerant hierarchical sensor networks

    Get PDF
    In two-tiered sensor networks, using higher-powered relay nodes as cluster heads has been shown to lead to further improvements in network performance. Placement of such relay nodes focuses on achieving specified coverage and connectivity requirements with as few relay nodes as possible. Existing placement strategies typically are unaware of energy dissipation due to routing and are not capable of optimizing the routing scheme and placement concurrently. We, in this thesis, propose an integrated integer linear program (ILP) formulation that determines the minimum number of relay nodes, along with their locations and a suitable communication strategy such that the network has a guaranteed lifetime as well as ensuring the pre-specified level of coverage (ks) and connectivity (kr). We also present an intersection based approach for creating the initial set of potential relay node positions, which are used by our ILP, and evaluate its performance under different conditions. Experimental results on networks with hundreds of sensor nodes show that our approach leads to significant improvement over existing energy-unaware placement schemes

    Routing Design Issues in Heterogeneous Wireless Sensor Network

    Get PDF
    WSN has important applications such as habitat monitoring, structural health monitoring, target tracking in military and many more. This has evolved due to availability of sensors that are cheaper and intelligent but these are having battery support. So, one of the major issues in WSN is maximization of network life. Heterogeneous WSNs have the potential to improve network lifetime and also provide higher quality networking and system services than the homogeneous WSN. Routing is the main concern of energy consumption in WSN. Previous research shows that performance of the network can be improve significantly using protocol of hierarchical HWSN. However, the appropriateness of a particular routing protocol mainly depends on the capabilities of the nodes and on the application requirements. This study presents different aspects of Heterogeneous Wireless Sensor network and design issues for routing in heterogeneous environment. Different perspectives from different authors regarding energy efficiency based on resource heterogeneity for heterogeneous wireless sensor networks have been presented

    Device-to-device based path selection for post disaster communication using hybrid intelligence

    Get PDF
    Public safety network communication methods are concurrence with emerging networks to provide enhanced strategies and services for catastrophe management. If the cellular network is damaged after a calamity, a new-generation network like the internet of things (IoT) is ready to assure network access. In this paper, we suggested a framework of hybrid intelligence to find and re-connect the isolated nodes to the functional area to save life. We look at a situation in which the devices in the hazard region can constantly monitor the radio environment to self-detect the occurrence of a disaster, switch to the device-to-device (D2D) communication mode, and establish a vital connection. The oscillating spider monkey optimization (OSMO) approach forms clusters of the devices in the disaster area to improve network efficiency. The devices in the secluded area use the cluster heads as relay nodes to the operational site. An oscillating particle swarm optimization (OPSO) with a priority-based path encoding technique is used for path discovery. The suggested approach improves the energy efficiency of the network by selecting a routing path based on the remaining energy of the device, channel quality, and hop count, thus increasing network stability and packet delivery

    Reliable cost-optimal deployment of wireless sensor networks

    Get PDF
    Wireless Sensor Networks (WSNs) technology is currently considered one of the key technologies for realizing the Internet of Things (IoT). Many of the important WSNs applications are critical in nature such that the failure of the WSN to carry out its required tasks can have serious detrimental effects. Consequently, guaranteeing that the WSN functions satisfactorily during its intended mission time, i.e. the WSN is reliable, is one of the fundamental requirements of the network deployment strategy. Achieving this requirement at a minimum deployment cost is particularly important for critical applications in which deployed SNs are equipped with expensive hardware. However, WSN reliability, defined in the traditional sense, especially in conjunction with minimizing the deployment cost, has not been considered as a deployment requirement in existing WSN deployment algorithms to the best of our knowledge. Addressing this major limitation is the central focus of this dissertation. We define the reliable cost-optimal WSN deployment as the one that has minimum deployment cost with a reliability level that meets or exceeds a minimum level specified by the targeted application. We coin the problem of finding such deployments, for a given set of application-specific parameters, the Minimum-Cost Reliability-Constrained Sensor Node Deployment Problem (MCRC-SDP). To accomplish the aim of the dissertation, we propose a novel WSN reliability metric which adopts a more accurate SN model than the model used in the existing metrics. The proposed reliability metric is used to formulate the MCRC-SDP as a constrained combinatorial optimization problem which we prove to be NP-Complete. Two heuristic WSN deployment optimization algorithms are then developed to find high quality solutions for the MCRC-SDP. Finally, we investigate the practical realization of the techniques that we developed as solutions of the MCRC-SDP. For this purpose, we discuss why existing WSN Topology Control Protocols (TCPs) are not suitable for managing such reliable cost-optimal deployments. Accordingly, we propose a practical TCP that is suitable for managing the sleep/active cycles of the redundant SNs in such deployments. Experimental results suggest that the proposed TCP\u27s overhead and network Time To Repair (TTR) are relatively low which demonstrates the applicability of our proposed deployment solution in practice
    • …
    corecore