23 research outputs found

    A Sarrus-like overconstrained eight-bar linkage and its associated Fulleroid-like platonic deployable mechanisms

    Get PDF
    This paper, for the first time, presents an overconstrained spatial eight-bar linkage and its application to the synthesis of a group of Fulleroid-like deployable platonic mechanisms. Structure of the proposed eight-bar linkage is introduced, and constrain and mobility of the linkage are revealed based on screw theory. Then by integrating the proposed eight-bar linkage into platonic polyhedron bases, synthesis of a group of Fulleroid-like deployable platonic mechanism is carried out; which is demonstrated by the synthesis and construction of a Fulleroid-like deployable tetrahedral mechanism. Further, mobility of the Fulleroid-like deployable platonic mechanisms is formulated via constraint matrices by following Kirchhoff’s circulation law for mechanical networks, and kinematics of the mechanisms is presented with numerical simulations illustrating the intrinsic kinematic properties of the group of Fulleroid-like deployable platonic mechanisms. In addition, a prototype of the Fulleroid-like deployable spherical-shape hexahedral mechanism is fabricated and tested; verifying the mobility and kinematic characteristics of the proposed deployable polyhedral mechanisms. Finally, application of the proposed deployable platonic mechanisms is demonstrated in the development of a transformable quadrotor. This paper hence presents a novel overconstrained spatial eight-bar linkage and a new geometrically intuitive method for synthesising Fulleroid-like regular deployable polyhedral mechanisms that have great potential applications in deployable, reconfigurable and multifunctional robots

    Characteristics of the double-cycled motion-ruled surface of the Schatz linkage based on differential geometry

    Get PDF
    This paper applies Euclidean invariants from differential geometry to kinematic properties of the ruled surfaces generated by the coupler link and the constraint-screw axes. Starting from investigating the assembly configuration, the work reveals two cycle phases of the coupler link when the input link finishes a full rotation. This leads to analysis of the motion ruled surface generated by the directrix along the coupler link, where Euclidean invariants are obtained and singularities are identified. This work further presents the constraint ruled surface that is generated by the constraint screw axes and unveils its intrinsic characteristics

    Surgical Applications of Compliant Mechanisms:A Review

    Get PDF
    Current surgical devices are mostly rigid and are made of stiff materials, even though their predominant use is on soft and wet tissues. With the emergence of compliant mechanisms (CMs), surgical tools can be designed to be flexible and made using soft materials. CMs offer many advantages such as monolithic fabrication, high precision, no wear, no friction, and no need for lubrication. It is therefore beneficial to consolidate the developments in this field and point to challenges ahead. With this objective, in this article, we review the application of CMs to surgical interventions. The scope of the review covers five aspects that are important in the development of surgical devices: (i) conceptual design and synthesis, (ii) analysis, (iii) materials, (iv) maim facturing, and (v) actuation. Furthermore, the surgical applications of CMs are assessed by classification into five major groups, namely, (i) grasping and cutting, (ii) reachability and steerability, (iii) transmission, (iv) sensing, and (v) implants and deployable devices. The scope and prospects of surgical devices using CMs are also discussed

    Master of Science

    Get PDF
    thesisUntethered magnetic devices such as magnetic capsule endoscopes, magnetic swimming microrobots, and magnetic screws, as well as tethered magnetic devices such as magnet-tipped catheters and magnet-tipped cochlear-implant electrode arrays, can be actuate

    Type synthesis and static balancing of a class of deployable mechanisms

    Get PDF
    This thesis addresses the type synthesis and static balancing of a class of deployable mechanisms, which can be applied in applications in many areas including aerospace and daily life. Novel construction methods are proposed to obtain the deployable mechanisms. First, the type synthesis of the foldable 8-revolute joint (R) linkages with multiple modes is presented. Two types of linkages are constructed by connecting planar 4R linkages and spherical 4R linkages. The obtained linkages can be folded into two layers or four layers, and have multiple motion modes. A spatial triad is also adopted to build single-loop linkages, then the single-loop linkages are connected using spherical (S) joints or RRR chains to obtain deployable polyhedral mechanisms (DPMs). The DPMs have only 1- degree-of-freedom (DOF) when deployed, and several mechanisms with 8R linkages and 10R linkages have multiple motion modes and can switch modes through transition positions. In addition, when connecting single-loop linkages using half the number of the RRR chains, the prism mechanisms obtain an additional 1-DOF rotation mode. Furthermore, the DPMs are developed into statically balanced mechanisms. The geometric static balancing approaches for the planar 4R parallelogram linkages, planar manipulators, spherical manipulators and spatial manipulators are developed so that the mechanisms can counter gravity while maintaining the positions of the mechanisms. Only springs are used to design the statically balanced system readily, with almost no calculation. A novel numerical optimization approach is also introduced which adopts the sum of squared differences of the potential energies as the objective function. Using the proposed static balancing approaches, the 8R linkages and the DPMs presented in this thesis can be statically balanced

    Programmable Multistable Mechanisms: Design, modeling, characterization and applications

    Get PDF
    Multistable Mechanisms are mechanical devices having more than one stable state. Since these mechanisms can maintain different deformations with zero force, they are advantageous for low power environments such as wristwatches and medical devices. In this thesis, I introduce programmable multistable mechanisms (PMMs), a new family of multistable mechanisms where the number, position, and stiffness of stable states can be controlled by programming inputs modifying the boundary conditions. PMMs can be synthesized by combining bistable mechanisms. This method was used to produce the T-mechanism, a PMM consisting of two double parallelogram mechanisms (DPMs) connected orthogonally where each DPM consists of two parallel beams connected centrally by a rigid block and axially loaded by programming input. An analytical model based on Euler-Bernoulli beam theory was derived to describe qualitatively the stability behaviour of the T-mechanism. The model approximates the mechanism's stiffness by a sixth order polynomial from which the reaction force and strain energy expressions can be estimated. These explicit formulas provide analytical expressions for the number, position, and stiffness of stable and unstable states as functions of the programming inputs. The qualitative stability behavior was represented by the programming diagram, bifurcation diagrams and stiffness maps relating the number, position and stiffness of stable states with the programming inputs. In addition, I showed that PMMs have zero stiffness regions functioning as constant-force multistable mechanisms. Numerical simulations validated these results. Experimental measurements were conducted on the T-mechanism prototype manufactured using electro-discharge machining. An experimental setup was built to measure the reaction force of the mechanism for different programming inputs. I verified the possible configurations of the T-mechanism including monostability bistability, tristability, quadrastability, zero stiffness regions, validating my analytical and numerical models. Compared to classical multistable mechanisms which are displaced between their stable states by imposing a direct displacement, PMMs can be displaced by modifying mechanism strain energy. This property increases the repeatability of the mechanism as the released energy is independent of the driving parameters, which can be advantageous for mechanical watches and medical devices. Accurate timekeepers require oscillators having repeatable period independent of their energy source. However, the balance wheel spiral spring oscillator used in all mechanical watches, suffers from isochronism defect, i.e., its oscillation period depends on its amplitude. I addressed this problem by introducing novel detached constant force escapements for mechanical wristwatches based on PMMs. In the medical domain, I applied PMMs to construct a retinal vein cannulation needle for the treatment of retinal vein occlusion. PMMs based needles produce sufficient repeatable puncturing energy with a predefined stroke independent of the operator input. Numerical simulations were used to model and dimension our proposed tool and satisfy the strict requirements of ophthalmologic operations. The tool was manufactured using 3D femto-laser printing of glass. An experimental setup was built to characterize the tool's mechanical behavior and to verify my computations. The tool was applied successfully to cannulate retinal veins of pig eyes

    Profile Synthesis Of Planar Variable Joints

    Get PDF
    Reconfigurable mechanisms provide quick changeover and reduced costs for low volume manufacturing applications. In addition, these mechanisms provide added flexibility in the context of a constrained environment. A subset of planar reconfigurable mechanisms use variable joints to provide this added adaptability. In this dissertation, the profile synthesis of planar variable joints that change from a rotational motion to a translational motion was investigated. A method was developed to perform automated profile synthesis. It was shown that combinations of higher variable joints can be used to create kinematically equivalent variable joints that are geometrically different. The results were used to create two new reconfigurable mechanisms that utilize the synthesized variable joints. The first reconfigurable mechanism is a four-bar mechanism that performs a rigid body guidance task not possible using conventional four-bar theory. The second mechanism uses variable joints in a 3-RPR parallel mechanism for singularity avoidance without adding redundant actuation

    Advances in Robot Kinematics : Proceedings of the 15th international conference on Advances in Robot Kinematics

    Get PDF
    International audienceThe motion of mechanisms, kinematics, is one of the most fundamental aspect of robot design, analysis and control but is also relevant to other scientific domains such as biome- chanics, molecular biology, . . . . The series of books on Advances in Robot Kinematics (ARK) report the latest achievement in this field. ARK has a long history as the first book was published in 1991 and since then new issues have been published every 2 years. Each book is the follow-up of a single-track symposium in which the participants exchange their results and opinions in a meeting that bring together the best of world’s researchers and scientists together with young students. Since 1992 the ARK symposia have come under the patronage of the International Federation for the Promotion of Machine Science-IFToMM.This book is the 13th in the series and is the result of peer-review process intended to select the newest and most original achievements in this field. For the first time the articles of this symposium will be published in a green open-access archive to favor free dissemination of the results. However the book will also be o↵ered as a on-demand printed book.The papers proposed in this book show that robot kinematics is an exciting domain with an immense number of research challenges that go well beyond the field of robotics.The last symposium related with this book was organized by the French National Re- search Institute in Computer Science and Control Theory (INRIA) in Grasse, France

    Peculiarities and anomalies of intonation with special reference to the construction and evolution of woodwind instruments

    Get PDF
    Includes bibliographical references.The author has been playing principal flute for almost twenty years, in the ""G Enescu"" Bucharest Philharmonic Orchestra, the Cape Town Symphony Orchestra and the Cape Philharmonic and was fortunate to hear live some of the leading world orchestras, among them the Berlin Philharmonic, Vienna Philharmonic, Gewandhaus, London Philharmonic, London Symphony, Orchestre Nationale de France, New York Philharmonic, Chicago Symphony and the Boston Symphony. All these great orchestras experienced intonation problems, mainly in the woodwind section, and I have started to study this phenomenon, which has followed me through my entire life
    corecore