142 research outputs found

    Feedback Control of an Exoskeleton for Paraplegics: Toward Robustly Stable Hands-free Dynamic Walking

    Get PDF
    This manuscript presents control of a high-DOF fully actuated lower-limb exoskeleton for paraplegic individuals. The key novelty is the ability for the user to walk without the use of crutches or other external means of stabilization. We harness the power of modern optimization techniques and supervised machine learning to develop a smooth feedback control policy that provides robust velocity regulation and perturbation rejection. Preliminary evaluation of the stability and robustness of the proposed approach is demonstrated through the Gazebo simulation environment. In addition, preliminary experimental results with (complete) paraplegic individuals are included for the previous version of the controller.Comment: Submitted to IEEE Control System Magazine. This version addresses reviewers' concerns about the robustness of the algorithm and the motivation for using such exoskeleton

    The Effect of Body Weight Support on Squat Biomechanics

    Get PDF
    Syed, Najam. MSME, Purdue University, December 2015. The Effect of Body Weight Support on Squat Biomechanics. Major Professor: Justin Seipel, School of Mechanical Engineering

    Overground Robot-Assisted Gait Training for Pediatric Cerebral Palsy

    Get PDF
    The untethered exoskeletal robot provides patients with the freest and realistic walking experience by assisting them based on their intended movement. However, few previous studies have reported the effect of robot-assisted gait training (RAGT) using wearable exoskeleton in children with cerebral palsy (CP). This pilot study evaluated the effect of overground RAGT using an untethered torque-assisted exoskeletal wearable robot for children with CP. Three children with bilateral spastic CP were recruited. The robot generates assistive torques according to gait phases automatically detected by force sensors: flexion torque during the swing phase and extension torque during the stance phase at hip and knee joints. The overground RAGT was conducted for 17~20 sessions (60 min per session) in each child. The evaluation was performed without wearing a robot before and after the training to measure (1) the motor functions using the gross motor function measure and the pediatric balance scale and (2) the gait performance using instrumented gait analysis, the 6-min walk test, and oxygen consumption measurement. All three participants showed improvement in gross motor function measure after training. Spatiotemporal parameters of gait analysis improved in participant P1 (9-year-old girl, GMFCS II) and participant P2 (13-year-old boy, GMFCS III). In addition, they walked faster and farther with lower oxygen consumption during the 6-min walk test after the training. Although participant P3 (16-year-old girl, GMFCS IV) needed the continuous help of a therapist for stepping at baseline, she was able to walk with the platform walker independently after the training. Overground RAGT using a torque-assisted exoskeletal wearable robot seems to be promising for improving gross motor function, walking speed, gait endurance, and gait efficiency in children with CP. In addition, it was safe and feasible even for children with severe motor impairment (GMFCS IV).ope

    Effects of overground walking with a robotic exoskeleton on lower limb muscle synergies

    Full text link
    Les exosquelettes robotisés de marche (ERM) représentent une intervention prometteuse dans le domaine de la réadaptation locomotrice. Sur le plan clinique, les ERM facilitent la mise en application de principes de neuroplasticité. Jusqu'à présent, la majorité des études analysant les effets de l’ERM a été menée avec des ERM fournissant une assistance robotique complète le long d’une trajectoire de mouvements prédéfinie des membres inférieurs (MI) de façon à reproduire la marche de façon quasi parfaite à très basse vitesse. La nouvelle génération d’ERM, maintenant disponible sur le marché, propose de nouveaux modes de contrôles qui permettent, entre autres, une liberté de mouvement accrue aux MIs (c.-à-d. trajectoire non imposée) et une possibilité d’offrir une assistance ou résistance aux mouvements de différentes intensités surtout pendant la phase d’oscillation du cycle de marche. Cependant, les effets de ces modes de contrôles sur la coordination musculaire des MI pendant la marche au sol avec l’ERM, caractérisé via l’extraction de synergies musculaires (SM), restent méconnus. Cette thèse mesure et compare les caractéristiques des SM (c.-à-d. nombre, profils d’activation, composition musculaire et contribution relative des muscles) pendant la la marche au sol sans ou avec un ERM paramétré avec six différents modes de contrôle chez des individus en bonne santé (articles #1 et #2) et d’autres ayant une lésion médullaire incomplète (LMI) (article #3). Les signaux électromyographiques (EMG) des différents muscles clés des MI, enregistrés lors de la marche, ont été utilisés afin d’extraire les SM avec un algorithme de factorisation matricielle non négative. La similarité des cosinus et les coefficients de corrélation ont caractérisé les similitudes entre les caractéristiques des SM. Les résultats montrent que: 1) les profils d'activation temporelle et le nombre de SM sont modifiés en fonction de la vitesse de marche avec, entre autres une augmentation de la vitesse de marche entrainant une fusion de SM, chez les individus en bonne santé marchant sans ERM ; 2) lorsque ces derniers marchent avec un ERM, les différents modes de contrôle testés ne dupliquent pas adéquatement les SM retrouvées lors de la marche sans ERM. En fait, uniquement le mode de contrôle libérant la contrainte de trajectoire de mouvements des MIs dans le plan sagittal lors de la phase d’oscillation reproduit les principales caractéristiques des SM retrouvées pendant la marche sans ERM ; 3) le nombre et la composition musculaire des SM sont modifiés pendant la marche sans ERM chez les personnes ayant une LMI. Cependant, parmi tous les modes de contrôle étudiés, seul le mode de contrôle libérant le contrôle de la trajectoire de mouvements des MI et assistant l’oscillation du MIs (c.-à-d. HASSIST) permets l’extraction de SM similaire à celles observées chez des individus en santé lors d'une marche sans ERM. Dans l’ensemble, cette thèse a mis en évidence le fait que différentes demandes biomécaniques liées à la marche (c.-à-d. vitesse de marche, modes de contrôle de l’ERM) modifient le nombre et les caractéristiques de SM chez les personnes en santé. Cette thèse a également confirmé que la coordination musculaire, mise en évidence via l’analyse de SM, est altérée chez les personnes ayant une LMI et a tendance à se normaliser lors de la marche avec l’ERM paramétré dans le mode de HASSIST. Les nouvelles preuves appuieront les professionnels de la réadaptation dans le processus de prise de décision concernant la sélection du mode de contrôle des MIs lors de l’entrainement locomoteur utilisant avec un ERM.Wearable robotic exoskeletons (WRE) represent a promising rehabilitation intervention for locomotor rehabilitation training that aligns with activity-based neuroplasticity principles in terms of optimal sensory input, massed repetition, and proper kinematics. Thus far, most studies that investigated the effects of WRE have used WRE that provide full robotic assistance and fixed trajectory guidance to the lower extremity (L/E) to generate close-to-normal walking kinematics, usually at very slow speeds. Based on clinicians’ feedback, current commercially-available WRE have additional control options to be able to integrate these devices into the recovery process of individuals who have maintained some ability to walk after an injury to the central nervous system. In this context, WRE now offer additional degrees of movements for the L/E to move freely and different strategies to assist or resist movement, particularly during the gait cycle’s swing phase. However, the extent that these additional WRE control options affect L/E neuromuscular control during walking, typically characterized using muscle synergies (MSs), remains unknown. This thesis measures and compares MSs characteristics (i.e., number, temporal activation profile, and muscles contributing to a specific synergy [weightings]) during typical overground walking, with and without a WRE, in six different control modes, in abled-bodied individuals (Articles #1 and #2) and individuals with incomplete spinal cord injury (iSCI; Article #3). Surface EMG of key L/E muscles were recorded while walking and used to extract MSs using a non-negative matrix factorization algorithm. Cosine similarity and correlation coefficients characterized, grouped, and indicated similarities between MS characteristics. Results demonstrated that: 1) the number of MSs and MS temporal activation profiles in able-bodied individuals walking without WRE are modified by walking speed and that, as speed increased, specific MSs were fused or merged compared to MSs at slow speeds; 2) In able-bodied individuals walking with WRE, few WRE control modes maintained the typical MSs characteristics that were found during overground walking without WRE. Moreover, freeing the L/E swing trajectory imposed by the WRE best reproduced those MSs characteristics during overground walking without the WRE; and 3) After an iSCI, alterations to the number and the composition of MSs were observed during walking without WRE. However, of all WRE control modes that were investigated, only HASSIST (i.e., freeing WRE control over L/E swing trajectory while assisting the user’s self-selected trajectory) reproduced the number and composition of MSs found in abled-bodied individuals during overground walking without WRE. Altogether, the results of this thesis demonstrated that different walking-related biomechanical demands (i.e., walking speed) and most of the WRE control modes can alter some MSs, and their characteristics, in able-bodied individuals. This research also confirmed that impaired muscle coordination, assessed via MSs, can adapt when walking with a WRE set with specific control options (e.g., HASSIST). These MS adaptations mimicked typical MS characteristics extracted during overground walking. The evidence generated by this thesis will support the decision-making process when selecting specific L/E control options during WRE walking, allowing rehabilitation professionals to refine WRE locomotor training protocols

    Ekonomicky dostupný aktivní exoskeleton pro dolní končetiny pro paraplegiky

    Get PDF
    After a broad introduction to the medical and biomechanical background and detailed review of orthotic devices, two newly developed lower limbs exoskeletons for paraplegics are presented in this study. There was found out the main challenges of designing devices for paraplegic walking can be summarized into three groups, stability and comfort, high efficiency or low energy consumption, dimensions and weight. These all attributes have to be moreover considered and maintained during manufacturing of affordable device while setting a reasonable price of the final product. A new economical device for people with paraplegia which tackles all problems of the three groups is introduced in this work. The main idea of this device is based on HALO mechanism. HALO is a compact passive medial hip joint orthosis with contralateral hip and ankle linkage, which keeps the feet always parallel to the ground and assists swinging the leg. The medial hip joint is equipped with one actuator in the new design and the new active exoskeleton is called @halo. Due to this update, we can achieve more stable and smoother walking patterns with decreased energy consumption of the users, yet maintain its compact and lightweight features. It was proven by the results from preliminary experiments with able-bodied subjects during which the same device with and without actuator was evaluated. Waddling and excessive vertical elevation of the centre of gravity were decreased by 40% with significantly smaller standard deviations in case of the powered exoskeleton. There was 52% less energy spent by the user wearing @halo which was calculated from the vertical excursion difference. There was measured 38.5% bigger impulse in crutches while using passive orthosis, which produced bigger loads in upper extremities musculature. The inverse dynamics approach was chosen to calculate and investigate the loads applied to the upper extremities. The result of this calculation has proven that all main muscle groups are engaged more aggressively and indicate more energy consumption during passive walking. The new @halo device is the first powered exoskeleton for lower limbs with just one actuated degree of freedom for users with paraplegia.První část práce je věnována obsáhlému úvodu do zdravotnické a biomechanické terminologie a detailnímu souhrnnému představení ortopedických pomůcek. Následně jsou představeny dva nově vyvinuté exoskelety aplikovatelné na dolní končetiny paraplegiků. Bylo zjištěno, že hlavní úskalí konstrukčního návrhu asistenčních zařízení pro paraplegiky lze shrnout do tří hlavních skupin, jako první je stabilita a komfort, druhá je vysoká účinnost a nízká energetická náročnost uživatele a do třetí lze zahrnout rozměry a hmotnost zařízení. Toto všechno je navíc podmíněno přijatelnou výslednou cenou produktu. Nový ekonomicky dostupný exoskelet pro paraplegiky, který řeší problematiku všech tří zmíněných skupin je představen v této práci. Hlavní myšlenka tohoto zařízení je postavena na mechanismu HALO ortézy. HALO je kompaktní pasivní ortéza s mediálním kyčelním kloubem umístěným uprostřed mezi dolními končetinami. Speciální mediální kyčelní kloub je kontralaterálně propojen s kotníkem soustavou ocelových lanek což zajištuje paralelní polohu chodidla se zemí v každém okamžiku chůze a navíc asistuje zhoupnutí končetiny. Tento mediální kyčelní kloub je redesignován a v novém provedení je vybaven jedním aktuátorem, nové řešení aktivního exoskeletu dostalo název @halo. Díky tomuto vylepšení lze dosáhnout stabilnější a plynulejší chůze s výrazně redukovanou energetickou náročností uživatele přičemž dochází k zachování nízké hmotnosti a kompaktnosti zařízení. Toto bylo dokázáno během předběžných experimentů se zdravými subjekty, během kterých byla testována aktivní chůze se zařízením vybaveným odnímatelnou pohonnou jednotkou a pasivní chůze se stejným zařízením bez této aktivní jednotky. Nadměrné naklánění se během chůze ze strany na stranu a nadměrná výchylka pohybu těžiště těla ve vertikálním směru byly sníženy o necelých 40% s velmi významně menšími standardními odchylkami v případě chůze s pohonem. Z rozdílu výchylky pohybu těžiště těla ve vertikální poloze bylo vypočítáno snížení energetické náročnosti uživatele o 52% při chůzi s aktivní konfiguraci @halo. Při pohybu s pasivní ortézou byl naměřen o 38,5% větší reakční silový impuls v berlích, což znamená nárůst zátěže pro svalový aparát horních končetin. Pro podrobné vyšetření zátěže ramenních kloubů byl aplikován model inverzní dynamiky. Výsledek tohoto výpočtu jednoznačně indikuje agresivnější a hlubší zapojení všech svalových skupin ramenního kloubu a tím vyšší spotřebu energie uživatelem během pasivní chůze. Nové asistenční zařízení @halo je prvním exoskeletem svého druhu pro paraplegiky s jediným poháněným stupněm volnosti.354 - Katedra robotikyvyhově
    corecore