276 research outputs found

    Perfomance Analysis and Resource Optimisation of Critical Systems Modelled by Petri Nets

    Get PDF
    Un sistema crítico debe cumplir con su misión a pesar de la presencia de problemas de seguridad. Este tipo de sistemas se suele desplegar en entornos heterogéneos, donde pueden ser objeto de intentos de intrusión, robo de información confidencial u otro tipo de ataques. Los sistemas, en general, tienen que ser rediseñados después de que ocurra un incidente de seguridad, lo que puede conducir a consecuencias graves, como el enorme costo de reimplementar o reprogramar todo el sistema, así como las posibles pérdidas económicas. Así, la seguridad ha de ser concebida como una parte integral del desarrollo de sistemas y como una necesidad singular de lo que el sistema debe realizar (es decir, un requisito no funcional del sistema). Así pues, al diseñar sistemas críticos es fundamental estudiar los ataques que se pueden producir y planificar cómo reaccionar frente a ellos, con el fin de mantener el cumplimiento de requerimientos funcionales y no funcionales del sistema. A pesar de que los problemas de seguridad se consideren, también es necesario tener en cuenta los costes incurridos para garantizar un determinado nivel de seguridad en sistemas críticos. De hecho, los costes de seguridad puede ser un factor muy relevante ya que puede abarcar diferentes dimensiones, como el presupuesto, el rendimiento y la fiabilidad. Muchos de estos sistemas críticos que incorporan técnicas de tolerancia a fallos (sistemas FT) para hacer frente a las cuestiones de seguridad son sistemas complejos, que utilizan recursos que pueden estar comprometidos (es decir, pueden fallar) por la activación de los fallos y/o errores provocados por posibles ataques. Estos sistemas pueden ser modelados como sistemas de eventos discretos donde los recursos son compartidos, también llamados sistemas de asignación de recursos. Esta tesis se centra en los sistemas FT con recursos compartidos modelados mediante redes de Petri (Petri nets, PN). Estos sistemas son generalmente tan grandes que el cálculo exacto de su rendimiento se convierte en una tarea de cálculo muy compleja, debido al problema de la explosión del espacio de estados. Como resultado de ello, una tarea que requiere una exploración exhaustiva en el espacio de estados es incomputable (en un plazo prudencial) para sistemas grandes. Las principales aportaciones de esta tesis son tres. Primero, se ofrecen diferentes modelos, usando el Lenguaje Unificado de Modelado (Unified Modelling Language, UML) y las redes de Petri, que ayudan a incorporar las cuestiones de seguridad y tolerancia a fallos en primer plano durante la fase de diseño de los sistemas, permitiendo así, por ejemplo, el análisis del compromiso entre seguridad y rendimiento. En segundo lugar, se proporcionan varios algoritmos para calcular el rendimiento (también bajo condiciones de fallo) mediante el cálculo de cotas de rendimiento superiores, evitando así el problema de la explosión del espacio de estados. Por último, se proporcionan algoritmos para calcular cómo compensar la degradación de rendimiento que se produce ante una situación inesperada en un sistema con tolerancia a fallos

    Overcoming Byzantine Failures Using Checkpointing

    Get PDF
    Coordinated Science Laboratory was formerly known as Control Systems LaboratoryDARPA / F30602-00-C-0172 and F30602-02-C-013

    Shadow Honeypots

    Get PDF
    We present Shadow Honeypots, a novel hybrid architecture that combines the best features of honeypots and anomaly detection. At a high level, we use a variety of anomaly detectors to monitor all traffic to a protected network or service. Traffic that is considered anomalous is processed by a "shadow honeypot" to determine the accuracy of the anomaly prediction. The shadow is an instance of the protected software that shares all internal state with a regular ("production") instance of the application, and is instrumented to detect potential attacks. Attacks against the shadow are caught, and any incurred state changes are discarded. Legitimate traffic that was misclassified will be validated by the shadow and will be handled correctly by the system transparently to the end user. The outcome of processing a request by the shadow is used to filter future attack instances and could be used to update the anomaly detector. Our architecture allows system designers to fine-tune systems for performance, since false positives will be filtered by the shadow. We demonstrate the feasibility of our approach in a proof-of-concept implementation of the Shadow Honeypot architecture for the Apache web server and the Mozilla Firefox browser. We show that despite a considerable overhead in the instrumentation of the shadow honeypot (up to 20% for Apache), the overall impact on the system is diminished by the ability to minimize the rate of false-positives

    Diverse intrusion-tolerant database replication

    Get PDF
    Tese de mestrado em Segurança Informática, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2012A combinação da replicação de bases de dados com mecanismos de tolerância a falhas bizantinas ainda é um campo de pesquisa recente com projetos a surgirem nestes últimos anos. No entanto, a maioria dos protótipos desenvolvidos ou se focam em problemas muito específicos, ou são baseados em suposições que são muito difíceis de garantir numa situação do mundo real, como por exemplo ter um componente confiável. Nesta tese apresentamos DivDB, um sistema de replicação de bases de dados diverso e tolerante a intrusões. O sistema está desenhado para ser incorporado dentro de um driver JDBC, o qual irá abstrair o utilizador de qualquer complexidade adicional dos mecanismos de tolerância a falhas bizantinas. O DivDB baseia-se na combinação de máquinas de estados replicadas com um algoritmo de processamento de transações, a fim de melhorar o seu desempenho. Para além disso, no DivDB é possível ligar cada réplica a um sistema de gestão de base de dados diferente, proporcionando assim diversidade ao sistema. Propusemos, resolvemos e implementamos três problemas em aberto, existentes na conceção de um sistema de gestão de base de dados replicado: autenticação, processamento de transações e transferência de estado. Estas características torna o DivDB exclusivo, pois é o único sistema que compreende essas três funcionalidades implementadas num sistema de base de dados replicado. A nossa implementação é suficientemente robusta para funcionar de forma segura num simples sistema de processamento de transações online. Para testar isso, utilizou-se o TPC-C, uma ferramenta de benchmarking que simula esse tipo de ambientes.The combination of database replication with Byzantine fault tolerance mechanism is a recent field of research with projects appearing in the last few years. However most of the prototypes produced are either focused on very specific problems or are based on assumptions that are very hard to accomplish in a real world scenario (e.g., trusted component). In this thesis we present DivDB, a Diverse Intrusion-Tolerant Database Replication system. It is designed to be incorporated inside a JDBC driver so that it abstracts the user from any added complexity from Byzantine Fault Tolerance mechanism. DivDB is based in State Machine Replication combined with a transaction handling algorithm in order to enhance its performance. DivDB is also able to have different database systems connected at each replica, enabling to achieve diversity. We proposed, solved and implemented three open problems in the design of a replicated database system: authentication, transaction handling and state-transfer. This makes DivDB unique since it is the only system that comprises all these three features in a single database replication system. Our implementation is robust enough to operate reliably in a simple Online Transaction Processing system. To test that, we used TPC-C, a benchmark tool that simulates that kind of environments

    Autonomic computing architecture for SCADA cyber security

    Get PDF
    Cognitive computing relates to intelligent computing platforms that are based on the disciplines of artificial intelligence, machine learning, and other innovative technologies. These technologies can be used to design systems that mimic the human brain to learn about their environment and can autonomously predict an impending anomalous situation. IBM first used the term ‘Autonomic Computing’ in 2001 to combat the looming complexity crisis (Ganek and Corbi, 2003). The concept has been inspired by the human biological autonomic system. An autonomic system is self-healing, self-regulating, self-optimising and self-protecting (Ganek and Corbi, 2003). Therefore, the system should be able to protect itself against both malicious attacks and unintended mistakes by the operator
    • …
    corecore