524 research outputs found

    Robust subspace learning for static and dynamic affect and behaviour modelling

    Get PDF
    Machine analysis of human affect and behavior in naturalistic contexts has witnessed a growing attention in the last decade from various disciplines ranging from social and cognitive sciences to machine learning and computer vision. Endowing machines with the ability to seamlessly detect, analyze, model, predict as well as simulate and synthesize manifestations of internal emotional and behavioral states in real-world data is deemed essential for the deployment of next-generation, emotionally- and socially-competent human-centered interfaces. In this thesis, we are primarily motivated by the problem of modeling, recognizing and predicting spontaneous expressions of non-verbal human affect and behavior manifested through either low-level facial attributes in static images or high-level semantic events in image sequences. Both visual data and annotations of naturalistic affect and behavior naturally contain noisy measurements of unbounded magnitude at random locations, commonly referred to as ‘outliers’. We present here machine learning methods that are robust to such gross, sparse noise. First, we deal with static analysis of face images, viewing the latter as a superposition of mutually-incoherent, low-complexity components corresponding to facial attributes, such as facial identity, expressions and activation of atomic facial muscle actions. We develop a robust, discriminant dictionary learning framework to extract these components from grossly corrupted training data and combine it with sparse representation to recognize the associated attributes. We demonstrate that our framework can jointly address interrelated classification tasks such as face and facial expression recognition. Inspired by the well-documented importance of the temporal aspect in perceiving affect and behavior, we direct the bulk of our research efforts into continuous-time modeling of dimensional affect and social behavior. Having identified a gap in the literature which is the lack of data containing annotations of social attitudes in continuous time and scale, we first curate a new audio-visual database of multi-party conversations from political debates annotated frame-by-frame in terms of real-valued conflict intensity and use it to conduct the first study on continuous-time conflict intensity estimation. Our experimental findings corroborate previous evidence indicating the inability of existing classifiers in capturing the hidden temporal structures of affective and behavioral displays. We present here a novel dynamic behavior analysis framework which models temporal dynamics in an explicit way, based on the natural assumption that continuous- time annotations of smoothly-varying affect or behavior can be viewed as outputs of a low-complexity linear dynamical system when behavioral cues (features) act as system inputs. A novel robust structured rank minimization framework is proposed to estimate the system parameters in the presence of gross corruptions and partially missing data. Experiments on prediction of dimensional conflict and affect as well as multi-object tracking from detection validate the effectiveness of our predictive framework and demonstrate that for the first time that complex human behavior and affect can be learned and predicted based on small training sets of person(s)-specific observations.Open Acces

    Local Color Contrastive Descriptor for Image Classification

    Full text link
    Image representation and classification are two fundamental tasks towards multimedia content retrieval and understanding. The idea that shape and texture information (e.g. edge or orientation) are the key features for visual representation is ingrained and dominated in current multimedia and computer vision communities. A number of low-level features have been proposed by computing local gradients (e.g. SIFT, LBP and HOG), and have achieved great successes on numerous multimedia applications. In this paper, we present a simple yet efficient local descriptor for image classification, referred as Local Color Contrastive Descriptor (LCCD), by leveraging the neural mechanisms of color contrast. The idea originates from the observation in neural science that color and shape information are linked inextricably in visual cortical processing. The color contrast yields key information for visual color perception and provides strong linkage between color and shape. We propose a novel contrastive mechanism to compute the color contrast in both spatial location and multiple channels. The color contrast is computed by measuring \emph{f}-divergence between the color distributions of two regions. Our descriptor enriches local image representation with both color and contrast information. We verified experimentally that it can compensate strongly for the shape based descriptor (e.g. SIFT), while keeping computationally simple. Extensive experimental results on image classification show that our descriptor improves the performance of SIFT substantially by combinations, and achieves the state-of-the-art performance on three challenging benchmark datasets. It improves recent Deep Learning model (DeCAF) [1] largely from the accuracy of 40.94% to 49.68% in the large scale SUN397 database. Codes for the LCCD will be available

    cvpaper.challenge in 2016: Futuristic Computer Vision through 1,600 Papers Survey

    Full text link
    The paper gives futuristic challenges disscussed in the cvpaper.challenge. In 2015 and 2016, we thoroughly study 1,600+ papers in several conferences/journals such as CVPR/ICCV/ECCV/NIPS/PAMI/IJCV

    Towards Realistic Facial Expression Recognition

    Get PDF
    Automatic facial expression recognition has attracted significant attention over the past decades. Although substantial progress has been achieved for certain scenarios (such as frontal faces in strictly controlled laboratory settings), accurate recognition of facial expression in realistic environments remains unsolved for the most part. The main objective of this thesis is to investigate facial expression recognition in unconstrained environments. As one major problem faced by the literature is the lack of realistic training and testing data, this thesis presents a web search based framework to collect realistic facial expression dataset from the Web. By adopting an active learning based method to remove noisy images from text based image search results, the proposed approach minimizes the human efforts during the dataset construction and maximizes the scalability for future research. Various novel facial expression features are then proposed to address the challenges imposed by the newly collected dataset. Finally, a spectral embedding based feature fusion framework is presented to combine the proposed facial expression features to form a more descriptive representation. This thesis also systematically investigates how the number of frames of a facial expression sequence can affect the performance of facial expression recognition algorithms, since facial expression sequences may be captured under different frame rates in realistic scenarios. A facial expression keyframe selection method is proposed based on keypoint based frame representation. Comprehensive experiments have been performed to demonstrate the effectiveness of the presented methods

    Machine learning in acoustics: theory and applications

    Full text link
    Acoustic data provide scientific and engineering insights in fields ranging from biology and communications to ocean and Earth science. We survey the recent advances and transformative potential of machine learning (ML), including deep learning, in the field of acoustics. ML is a broad family of techniques, which are often based in statistics, for automatically detecting and utilizing patterns in data. Relative to conventional acoustics and signal processing, ML is data-driven. Given sufficient training data, ML can discover complex relationships between features and desired labels or actions, or between features themselves. With large volumes of training data, ML can discover models describing complex acoustic phenomena such as human speech and reverberation. ML in acoustics is rapidly developing with compelling results and significant future promise. We first introduce ML, then highlight ML developments in four acoustics research areas: source localization in speech processing, source localization in ocean acoustics, bioacoustics, and environmental sounds in everyday scenes.Comment: Published with free access in Journal of the Acoustical Society of America, 27 Nov. 201

    Kernel and Classifier Level Fusion for Image Classification.

    Get PDF
    Automatic understanding of visual information is one of the main requirements for a complete artificial intelligence system and an essential component of autonomous robots. State-of-the-art image recognition approaches are based on different local descriptors, each capturing some properties of the image such as intensity, color and texture. Each set of local descriptors is represented by a codebook and gives rise to a separate feature channel. For classification the feature channels are combined by using multiple kernel learning (MKL), early fusion or classifier level fusion approaches. Due to the importance of complementary information in fusion techniques, there is an increasing demand for diverse feature channels. The first part of the thesis focuses on the ways to encode information from images that is complementary to the state-of-the-art local features. To address this issue we present a novel image representation which can encode the structure of an object and propose three descriptors based on this representation. In the state-of-the-art recognition system the kernels are often computed independently of each other and thus may be highly informative yet redundant. Proper selection and fusion of the kernels is, therefore, crucial to maximize the performance and to address the efficiency issues in visual recognition applications. We address this issue in second part of the thesis where, we propose novel techniques to fuse feature channels for object and pattern recognition. We present an extensive evaluation of the fusion methods on four object recognition datasets and achieve state-of-the-art results on all of them. We also present results on four bioinformatics datasets to demonstrate that the proposed fusion methods work for a variety of pattern recognition problems, provided that we have multiple feature channels

    Learning by correlation for computer vision applications: from Kernel methods to deep learning

    Get PDF
    Learning to spot analogies and differences within/across visual categories is an arguably powerful approach in machine learning and pattern recognition which is directly inspired by human cognition. In this thesis, we investigate a variety of approaches which are primarily driven by correlation and tackle several computer vision applications

    Feature Reduction and Representation Learning for Visual Applications

    Get PDF
    Computation on large-scale data spaces has been involved in many active problems in computer vision and pattern recognition. However, in realistic applications, most existing algorithms are heavily restricted by the large number of features, and tend to be inefficient and even infeasible. In this thesis, the solution to this problem is addressed in the following ways: (1) projecting features onto a lower-dimensional subspace; (2) embedding features into a Hamming space. Firstly, a novel subspace learning algorithm called Local Feature Discriminant Projection (LFDP) is proposed for discriminant analysis of local features. LFDP is able to efficiently seek a subspace to improve the discriminability of local features for classification. Extensive experimental validation on three benchmark datasets demonstrates that the proposed LFDP outperforms other dimensionality reduction methods and achieves state-of-the-art performance for image classification. Secondly, for action recognition, a novel binary local representation for RGB-D video data fusion is presented. In this approach, a general local descriptor called Local Flux Feature (LFF) is obtained for both RGB and depth data by computing the local fluxes of the gradient fields of video data. Then the LFFs from RGB and depth channels are fused into a Hamming space via the Structure Preserving Projection (SPP), which preserves not only the pairwise feature structure, but also a higher level connection between samples and classes. Comprehensive experimental results show the superiority of both LFF and SPP. Thirdly, in respect of unsupervised learning, SPP is extended to the Binary Set Embedding (BSE) for cross-modal retrieval. BSE outputs meaningful hash codes for local features from the image domain and word vectors from text domain. Extensive evaluation on two widely-used image-text datasets demonstrates the superior performance of BSE compared with state-of-the-art cross-modal hashing methods. Finally, a generalized multiview spectral embedding algorithm called Kernelized Multiview Projection (KMP) is proposed to fuse the multimedia data from multiple sources. Different features/views in the reproducing kernel Hilbert spaces are linearly fused together and then projected onto a low-dimensional subspace by KMP, whose performance is thoroughly evaluated on both image and video datasets compared with other multiview embedding methods

    Deliverable D1.1 State of the art and requirements analysis for hypervideo

    Get PDF
    This deliverable presents a state-of-art and requirements analysis report for hypervideo authored as part of the WP1 of the LinkedTV project. Initially, we present some use-case (viewers) scenarios in the LinkedTV project and through the analysis of the distinctive needs and demands of each scenario we point out the technical requirements from a user-side perspective. Subsequently we study methods for the automatic and semi-automatic decomposition of the audiovisual content in order to effectively support the annotation process. Considering that the multimedia content comprises of different types of information, i.e., visual, textual and audio, we report various methods for the analysis of these three different streams. Finally we present various annotation tools which could integrate the developed analysis results so as to effectively support users (video producers) in the semi-automatic linking of hypervideo content, and based on them we report on the initial progress in building the LinkedTV annotation tool. For each one of the different classes of techniques being discussed in the deliverable we present the evaluation results from the application of one such method of the literature to a dataset well-suited to the needs of the LinkedTV project, and we indicate the future technical requirements that should be addressed in order to achieve higher levels of performance (e.g., in terms of accuracy and time-efficiency), as necessary

    Data-Driven Shape Analysis and Processing

    Full text link
    Data-driven methods play an increasingly important role in discovering geometric, structural, and semantic relationships between 3D shapes in collections, and applying this analysis to support intelligent modeling, editing, and visualization of geometric data. In contrast to traditional approaches, a key feature of data-driven approaches is that they aggregate information from a collection of shapes to improve the analysis and processing of individual shapes. In addition, they are able to learn models that reason about properties and relationships of shapes without relying on hard-coded rules or explicitly programmed instructions. We provide an overview of the main concepts and components of these techniques, and discuss their application to shape classification, segmentation, matching, reconstruction, modeling and exploration, as well as scene analysis and synthesis, through reviewing the literature and relating the existing works with both qualitative and numerical comparisons. We conclude our report with ideas that can inspire future research in data-driven shape analysis and processing.Comment: 10 pages, 19 figure
    corecore