181 research outputs found

    A Touch of Evil: High-Assurance Cryptographic Hardware from Untrusted Components

    Get PDF
    The semiconductor industry is fully globalized and integrated circuits (ICs) are commonly defined, designed and fabricated in different premises across the world. This reduces production costs, but also exposes ICs to supply chain attacks, where insiders introduce malicious circuitry into the final products. Additionally, despite extensive post-fabrication testing, it is not uncommon for ICs with subtle fabrication errors to make it into production systems. While many systems may be able to tolerate a few byzantine components, this is not the case for cryptographic hardware, storing and computing on confidential data. For this reason, many error and backdoor detection techniques have been proposed over the years. So far all attempts have been either quickly circumvented, or come with unrealistically high manufacturing costs and complexity. This paper proposes Myst, a practical high-assurance architecture, that uses commercial off-the-shelf (COTS) hardware, and provides strong security guarantees, even in the presence of multiple malicious or faulty components. The key idea is to combine protective-redundancy with modern threshold cryptographic techniques to build a system tolerant to hardware trojans and errors. To evaluate our design, we build a Hardware Security Module that provides the highest level of assurance possible with COTS components. Specifically, we employ more than a hundred COTS secure crypto-coprocessors, verified to FIPS140-2 Level 4 tamper-resistance standards, and use them to realize high-confidentiality random number generation, key derivation, public key decryption and signing. Our experiments show a reasonable computational overhead (less than 1% for both Decryption and Signing) and an exponential increase in backdoor-tolerance as more ICs are added

    Biometric Cryptosystems : Authentication, Encryption and Signature for Biometric Identities

    Get PDF
    Biometrics have been used for secure identification and authentication for more than two decades since biometric data is unique, non-transferable, unforgettable, and always with us. Recently, biometrics has pervaded other aspects of security applications that can be listed under the topic of ``Biometric Cryptosystems''. Although the security of some of these systems is questionable when they are utilized alone, integration with other technologies such as digital signatures or Identity Based Encryption (IBE) schemes results in cryptographically secure applications of biometrics. It is exactly this field of biometric cryptosystems that we focused in this thesis. In particular, our goal is to design cryptographic protocols for biometrics in the framework of a realistic security model with a security reduction. Our protocols are designed for biometric based encryption, signature and remote authentication. We first analyze the recently introduced biometric remote authentication schemes designed according to the security model of Bringer et al.. In this model, we show that one can improve the database storage cost significantly by designing a new architecture, which is a two-factor authentication protocol. This construction is also secure against the new attacks we present, which disprove the claimed security of remote authentication schemes, in particular the ones requiring a secure sketch. Thus, we introduce a new notion called ``Weak-identity Privacy'' and propose a new construction by combining cancelable biometrics and distributed remote authentication in order to obtain a highly secure biometric authentication system. We continue our research on biometric remote authentication by analyzing the security issues of multi-factor biometric authentication (MFBA). We formally describe the security model for MFBA that captures simultaneous attacks against these systems and define the notion of user privacy, where the goal of the adversary is to impersonate a client to the server. We design a new protocol by combining bipartite biotokens, homomorphic encryption and zero-knowledge proofs and provide a security reduction to achieve user privacy. The main difference of this MFBA protocol is that the server-side computations are performed in the encrypted domain but without requiring a decryption key for the authentication decision of the server. Thus, leakage of the secret key of any system component does not affect the security of the scheme as opposed to the current biometric systems involving cryptographic techniques. We also show that there is a tradeoff between the security level the scheme achieves and the requirement for making the authentication decision without using any secret key. In the second part of the thesis, we delve into biometric-based signature and encryption schemes. We start by designing a new biometric IBS system that is based on the currently most efficient pairing based signature scheme in the literature. We prove the security of our new scheme in the framework of a stronger model compared to existing adversarial models for fuzzy IBS, which basically simulates the leakage of partial secret key components of the challenge identity. In accordance with the novel features of this scheme, we describe a new biometric IBE system called as BIO-IBE. BIO-IBE differs from the current fuzzy systems with its key generation method that not only allows for a larger set of encryption systems to function for biometric identities, but also provides a better accuracy/identification of the users in the system. In this context, BIO-IBE is the first scheme that allows for the use of multi-modal biometrics to avoid collision attacks. Finally, BIO-IBE outperforms the current schemes and for small-universe of attributes, it is secure in the standard model with a better efficiency compared to its counterpart. Another contribution of this thesis is the design of biometric IBE systems without using pairings. In fact, current fuzzy IBE schemes are secure under (stronger) bilinear assumptions and the decryption of each message requires pairing computations almost equal to the number of attributes defining the user. Thus, fuzzy IBE makes error-tolerant encryption possible at the expense of efficiency and security. Hence, we design a completely new construction for biometric IBE based on error-correcting codes, generic conversion schemes and weakly secure anonymous IBE schemes that encrypt a message bit by bit. The resulting scheme is anonymous, highly secure and more efficient compared to pairing-based biometric IBE, especially for the decryption phase. The security of our generic construction is reduced to the security of the anonymous IBE scheme, which is based on the Quadratic Residuosity assumption. The binding of biometric features to the user's identity is achieved similar to BIO-IBE, thus, preserving the advantages of its key generation procedure

    Securing Abe\u27s Mix-net Against Malicious Verifiers via Witness Indistinguishability

    Get PDF
    We show that the simple and appealing unconditionally sound mix-net due to Abe (Asiacrypt\u2799) can be augmented to further guarantee anonymity against malicious verifiers. This additional guarantee implies, in particular, that when applying the Fiat-Shamir transform to the mix-net\u27s underlying sub-protocols, anonymity is provably guaranteed for {\em any} hash function. As our main contribution, we demonstrate how anonymity can be attained, even if most sub-protocols of a mix-net are merely witness indistinguishable (WI). We instantiate our framework with two variants of Abe\u27s mix-net. In the first variant, ElGamal ciphertexts are replaced by an alternative, yet equally efficient, lossy encryption scheme. In the second variant, new dummy vote ciphertexts are injected prior to the mixing process, and then removed. Our techniques center on new methods to introduce additional witnesses to the sub-protocols within the proof of security. This, in turn, enables us to leverage the WI guarantees against malicious verifiers. In our first instantiation, these witnesses follow somewhat naturally from the lossiness of the encryption scheme, whereas in our second instantiation they follow from leveraging combinatorial properties of the Benes-network. These approaches may be of independent interest. Finally, we demonstrate cases in Abe\u27s original mix-net (without modification) where only one witness exists, such that if the WI proof leaks information on the (single) witness in these cases, then the system will not be anonymous against malicious verifiers

    Implementing Homomorphic Encryption Based Secure Feedback Control for Physical Systems

    Full text link
    This paper is about an encryption based approach to the secure implementation of feedback controllers for physical systems. Specifically, Paillier's homomorphic encryption is used to digitally implement a class of linear dynamic controllers, which includes the commonplace static gain and PID type feedback control laws as special cases. The developed implementation is amenable to Field Programmable Gate Array (FPGA) realization. Experimental results, including timing analysis and resource usage characteristics for different encryption key lengths, are presented for the realization of an inverted pendulum controller; as this is an unstable plant, the control is necessarily fast

    Robust Encryption

    Get PDF
    We provide a provable-security treatment of ``robust\u27\u27 encryption. Robustness means it is hard to produce a ciphertext that is valid for two different users. Robustness makes explicit a property that has been implicitly assumed in the past. We argue that it is an essential conjunct of anonymous encryption. We show that natural anonymity-preserving ways to achieve it, such as adding recipient identification information before encrypting, fail. We provide transforms that do achieve it, efficiently and provably. We assess the robustness of specific encryption schemes in the literature, providing simple patches for some that lack the property. We discuss applications including PEKS (Public-key Encryption with Keyword Search) and auctions. Overall our work enables safer and simpler use of encryption

    New approaches for electronic voting paradigms

    Get PDF
    La democràcia es el sistema de govern més utilitzat al món. No obstant, en un món cada vegada més globalitzat, la idea de mobilitzar la gent per votar en un col·legi electoral gestionat per persones resulta antiquada tot i ser la implementació més comú en l'actualitat. Millorar aquesta situació mitjançant l'ús de les tecnologies de la informació sembla una evolució òbvia i molt demanada però, malgrat l'existència d'algunes implementacions en entorns reals, encara no ha estat utilitzada excepte en comptades ocasions. Obrir la porta d'unes eleccions a les tecnologies de la informació implica l'obertura dels protocols de votació a un nou conjunt d'atacs contra aquests. Tenint en compte els requisits d'una elecció: privacitat del votant i integritat de l'elecció, les solucions actuals passen per implementar l'elecció seguint un dels tres paradigmes de vot segurs: barreja de vots, recompte homomòrfic o signatura cega. En aquesta tesi, es proposen nous protocols per als diferents paradigmes. La primera proposta consisteix en un sistema de vot que, basant-se en una informació redundant enviada pel votant, és capaç de realitzar una barreja de vots amb cost negligible incrementant lleugerament el cost del recompte. Per al paradigma de recompte homomòrfic, es proposa una prova de validesa del vot basada en les proves utilitzades per demostrar la correctesa en sistemes amb barreja de vots. Aquesta solució permet utilitzar les millores realitzades sobre el paradigma de barreja de vots per al seu ús en el paradigma de recompte homomòrfic. Finalment, es plantegen dues solucions per a eleccions del paradigma de signatura cega. La primera utilitza credencials generades amb signatura cega per permetre als votants vàlids enviar el seu vot sense que es conegui la seva identitat. La segona resol el problema del vot doble en aquest paradigma mitjan cant una construcció que utilitza un sistema de moneda electrònica off-line.La democracia es el sistema de gobierno más usado en el mundo. No obstante, en un mundo cada vez más globalizado, la idea de movilizar a la gente para votar en un colegio electoral gestionado por personas resulta anticuada a pesar de ser la implementación más común en la actualidad. Mejorar esta situación mediante el uso de las tecnologías de la información parece una evolución obvia y muy solicitada pero, a pesar de unas pocas adaptaciones, aún no ha sido usada salvo en escasas ocasiones. Abrir la puerta de unas elecciones a las tecnologías de la información lleva implícita la apertura de los protocolos de voto a un nuevo conjunto de ataques contra estos. Teniendo en cuenta los requisitos de una elección: privacidad del votante e integridad de la elección, las soluciones actuales pasan por implementar la elección siguiendo uno de los tres paradigmas de voto seguros: mezcla de votos, recuento homomórfico o firma ciega. En esta tesis, se proponen nuevos protocolos para los distintos paradigmas. La primera propuesta consiste en un sistema de voto bajo el paradigma de mezcla de votos que, basándose en una información redundante enviada por el votante, es capaz de realizar una mezcla de votos con un coste negligible incrementando ligeramente el coste del recuento. Para el paradigma de recuento homomórfico, se propone una prueba para verificar que el voto es válido basada en las pruebas de correctitud en sistemas con mezcla de votos. Esta solución permite usar las mejoras realizadas en el paradigma de mezcla de votos para su uso en el paradigma de recuento homomórfico. Finalmente, se proponen dos nuevos protocolos del paradigma de firma ciega. El primero utiliza credenciales generadas con firma ciega para permitir a votantes válidos enviar su voto sin que se conozca su identidad. El segundo resuelve el problema del voto doble en el paradigma de firma ciega mediante una construcción que utiliza un sistema de moneda electrónica off-line.Democracy is the most established government system in the world. However, in an increasingly globalized world, the idea of requiring people to move in order to cast their vote in the polling station seems outdated, even though it is, nowadays, the most common implementation. An obvious and widely demanded evolution is to improve the election framework by enabling the use of information technologies. Nevertheless, this solution has been implemented few times in real environment elections and the global success of these solutions have been called into question. The use of information technologies in voting protocols improves the quality of the election but, at the same time, it also opens up the voting protocols to new threats. Keeping this attacks in mind and given the election requirements: voter's privacy and election's integrity, the solutions proposed up to date are to implement one of the three secure voting paradigms: mixtype based, homomorphic tally, and blind signature. In this thesis, we present new protocols for the di erent paradigms. Our rst proposal, based on the mix-type paradigm, consists in a voting protocol which is able to perform the ballot mix with negligible cost but slightly increasing the tally cost. The proposed protocol makes use of a proper vote generation based on sending secret redundant information with the ballot when it is cast. For the homomorphic tally paradigm, we propose a zero knowledge proof of correctness of the ballot based on the proofs used to demonstrate the correctness of a shu e in the mix-type paradigm. This protocol makes possible to use the improvements on the shu e correctness proofs in the homomorphic tally paradigm. Finally, two di erent protocols are also proposed for the blind signature paradigm. The rst one uses credentials generated by means of a blind signature which allow eligible voters to cast their vote without leaking information about their identity. The second one is focused on solving the double voting problem in this paradigm. The protocol proposed uses o -line e-coin systems to provide anonymity disclosure in case of double voting

    Adaptive Proofs of Knowledge in the Random Oracle Model

    Get PDF
    We formalise the notion of adaptive proofs of knowledge in the random oracle model, where the extractor has to recover witnesses for multiple, possibly adaptively chosen statements and proofs. We also discuss extensions to simulation soundness, as typically required for the ``encrypt-then-prove\u27\u27 construction of strongly secure encryption from IND-CPA schemes. Utilizing our model we show three results: (1) Simulation-sound adaptive proofs exist. (2) The ``encrypt-then-prove\u27\u27 construction with a simulation-sound adaptive proof yields CCA security. This appears to be a ``folklore\u27\u27 result but which has never been proven in the random oracle model. As a corollary, we obtain a new class of CCA-secure encryption schemes. (3) We show that the Fiat-Shamir transformed Schnorr protocol is _not_ adaptively secure and discuss the implications of this limitation. Our result not only separates adaptive proofs from proofs of knowledge, but also gives a strong hint why Signed ElGamal as the most prominent encrypt-then-prove example has not been proven CCA-secure without making further assumptions
    • …
    corecore