528 research outputs found

    Multilevel B-Splines-Based Learning Approach for Sound Source Localization

    Full text link
    © 2001-2012 IEEE. In this paper, a new learning approach for sound source localization is presented using ad hoc either synchronous or asynchronous distributed microphone networks based on the time differences of arrival (TDOA) estimation. It is first to propose a new concept in which the coordinates of a sound source location are defined as the functions of TDOAs, computing for each pair of microphone signals in the network. Then, given a set of pre-recorded sound measurements and their corresponding source locations, the multilevel B-splines-based learning model is proposed to be trained by the input of the known TDOAs and the output of the known coordinates of the sound source locations. For a new acoustic source, if its sound signals are recorded, the correspondingly computed TDOAs can be fed into the learned model to predict the location of the new source. Superiorities of the proposed method are to incorporate the acoustic characteristics of a targeted environment and even remaining uncertainty of TDOA estimations into the learning model before conducting its prediction and to be applicable for both synchronous or asynchronous distributed microphone sensor networks. The effectiveness of the proposed algorithm in terms of localization accuracy and computational cost in comparisons with the state-of-the-art methods was extensively validated on both synthetic simulation experiments as well as in three real-life environments

    Audio Fingerprinting for Multi-Device Self-Localization

    Get PDF
    This work was supported by the U.K. Engineering and Physical Sciences Research Council (EPSRC) under Grant EP/K007491/1

    Acoustic Sensor Networks and Mobile Robotics for Sound Source Localization

    Full text link
    © 2019 IEEE. Localizing a sound source is a fundamental but still challenging issue in many applications, where sound information is gathered by static and local microphone sensors. Therefore, this work proposes a new system by exploiting advances in sensor networks and robotics to more accurately address the problem of sound source localization. By the use of the network infrastructure, acoustic sensors are more efficient to spatially monitor acoustical phenomena. Furthermore, a mobile robot is proposed to carry an extra microphone array in order to collect more acoustic signals when it travels around the environment. Driving the robot is guided by the need to increase the quality of the data gathered by the static acoustic sensors, which leads to better probabilistic fusion of all the information gained, so that an increasingly accurate map of the sound source can be built. The proposed system has been validated in a real-life environment, where the obtained results are highly promising

    Source localization and denoising: a perspective from the TDOA space

    Full text link
    In this manuscript, we formulate the problem of denoising Time Differences of Arrival (TDOAs) in the TDOA space, i.e. the Euclidean space spanned by TDOA measurements. The method consists of pre-processing the TDOAs with the purpose of reducing the measurement noise. The complete set of TDOAs (i.e., TDOAs computed at all microphone pairs) is known to form a redundant set, which lies on a linear subspace in the TDOA space. Noise, however, prevents TDOAs from lying exactly on this subspace. We therefore show that TDOA denoising can be seen as a projection operation that suppresses the component of the noise that is orthogonal to that linear subspace. We then generalize the projection operator also to the cases where the set of TDOAs is incomplete. We analytically show that this operator improves the localization accuracy, and we further confirm that via simulation.Comment: 25 pages, 9 figure

    SALSA: A Novel Dataset for Multimodal Group Behavior Analysis

    Get PDF
    Studying free-standing conversational groups (FCGs) in unstructured social settings (e.g., cocktail party ) is gratifying due to the wealth of information available at the group (mining social networks) and individual (recognizing native behavioral and personality traits) levels. However, analyzing social scenes involving FCGs is also highly challenging due to the difficulty in extracting behavioral cues such as target locations, their speaking activity and head/body pose due to crowdedness and presence of extreme occlusions. To this end, we propose SALSA, a novel dataset facilitating multimodal and Synergetic sociAL Scene Analysis, and make two main contributions to research on automated social interaction analysis: (1) SALSA records social interactions among 18 participants in a natural, indoor environment for over 60 minutes, under the poster presentation and cocktail party contexts presenting difficulties in the form of low-resolution images, lighting variations, numerous occlusions, reverberations and interfering sound sources; (2) To alleviate these problems we facilitate multimodal analysis by recording the social interplay using four static surveillance cameras and sociometric badges worn by each participant, comprising the microphone, accelerometer, bluetooth and infrared sensors. In addition to raw data, we also provide annotations concerning individuals' personality as well as their position, head, body orientation and F-formation information over the entire event duration. Through extensive experiments with state-of-the-art approaches, we show (a) the limitations of current methods and (b) how the recorded multiple cues synergetically aid automatic analysis of social interactions. SALSA is available at http://tev.fbk.eu/salsa.Comment: 14 pages, 11 figure

    A Geometrical-Statistical Approach to Outlier Removal for TDOA Measurements

    Get PDF
    The curse of outlier measurements in estimation problems is a well-known issue in a variety of fields. Therefore, outlier removal procedures, which enables the identification of spurious measurements within a set, have been developed for many different scenarios and applications. In this paper, we propose a statistically motivated outlier removal algorithm for time differences of arrival (TDOAs), or equivalently range differences (RD), acquired at sensor arrays. The method exploits the TDOA-space formalism and works by only knowing relative sensor positions. As the proposed method is completely independent from the application for which measurements are used, it can be reliably used to identify outliers within a set of TDOA/RD measurements in different fields (e.g., acoustic source localization, sensor synchronization, radar, remote sensing, etc.). The proposed outlier removal algorithm is validated by means of synthetic simulations and real experiments

    Shooter Localization in wireless acoustic sensor networks: experiments, design and algorithm implementation on a centralised gateway.

    Get PDF
    A feasibility study for a wireless network for shooter localization, using low cost microphones on motes performing muzzle blast and bullet shockwave detection with a computationally light Spectrogram approach, and a Zynq-based centralized controller which provides the localization. Design of the experimental setup, real data acquisition and analysis are provided, particularly a single sensor approach for range estimation has been implemente
    • …
    corecore