12,448 research outputs found

    RFVTM: A Recovery and Filtering Vertex Trichotomy Matching for Remote Sensing Image Registration

    Full text link
    Reliable feature point matching is a vital yet challenging process in feature-based image registration. In this paper,a robust feature point matching algorithm called Recovery and Filtering Vertex Trichotomy Matching (RFVTM) is proposed to remove outliers and retain sufficient inliers for remote sensing images. A novel affine invariant descriptor called vertex trichotomy descriptor is proposed on the basis of that geometrical relations between any of vertices and lines are preserved after affine transformations, which is constructed by mapping each vertex into trichotomy sets. The outlier removals in Vertex Trichotomy Matching (VTM) are implemented by iteratively comparing the disparity of corresponding vertex trichotomy descriptors. Some inliers mistakenly validated by a large amount of outliers are removed in VTM iterations, and several residual outliers close to correct locations cannot be excluded with the same graph structures. Therefore, a recovery and filtering strategy is designed to recover some inliers based on identical vertex trichotomy descriptors and restricted transformation errors. Assisted with the additional recovered inliers, residual outliers can also be filtered out during the process of reaching identical graph for the expanded vertex sets. Experimental results demonstrate the superior performance on precision and stability of this algorithm under various conditions, such as remote sensing images with large transformations, duplicated patterns, or inconsistent spectral content

    Image Registration Techniques: A Survey

    Full text link
    Image Registration is the process of aligning two or more images of the same scene with reference to a particular image. The images are captured from various sensors at different times and at multiple view-points. Thus to get a better picture of any change of a scene or object over a considerable period of time image registration is important. Image registration finds application in medical sciences, remote sensing and in computer vision. This paper presents a detailed review of several approaches which are classified accordingly along with their contributions and drawbacks. The main steps of an image registration procedure are also discussed. Different performance measures are presented that determine the registration quality and accuracy. The scope for the future research are presented as well

    Feature-based groupwise registration of historical aerial images to present-day ortho-photo maps

    Full text link
    In this paper, we address the registration of historical WWII images to present-day ortho-photo maps for the purpose of geolocalization. Due to the challenging nature of this problem, we propose to register the images jointly as a group rather than in a step-by-step manner. To this end, we exploit Hough Voting spaces as pairwise registration estimators and show how they can be integrated into a probabilistic groupwise registration framework that can be efficiently optimized. The feature-based nature of our registration framework allows to register images with a-priori unknown translational and rotational relations, and is also able to handle scale changes of up to 30% in our test data due to a final geometrically guided matching step. The superiority of the proposed method over existing pairwise and groupwise registration methods is demonstrated on eight highly challenging sets of historical images with corresponding ortho-photo maps.Comment: Under review at Elsevier Pattern Recognitio

    An investigation towards wavelet based optimization of automatic image registration techniques

    Full text link
    Image registration is the process of transforming different sets of data into one coordinate system and is required for various remote sensing applications like change detection, image fusion, and other related areas. The effect of increased relief displacement, requirement of more control points, and increased data volume are the challenges associated with the registration of high resolution image data. The objective of this research work is to study the most efficient techniques and to investigate the extent of improvement achievable by enhancing them with Wavelet transform. The SIFT feature based method uses the Eigen value for extracting thousands of key points based on scale invariant features and these feature points when further enhanced by the wavelet transform yields the best results

    Sub-Pixel Registration of Wavelet-Encoded Images

    Full text link
    Sub-pixel registration is a crucial step for applications such as super-resolution in remote sensing, motion compensation in magnetic resonance imaging, and non-destructive testing in manufacturing, to name a few. Recently, these technologies have been trending towards wavelet encoded imaging and sparse/compressive sensing. The former plays a crucial role in reducing imaging artifacts, while the latter significantly increases the acquisition speed. In view of these new emerging needs for applications of wavelet encoded imaging, we propose a sub-pixel registration method that can achieve direct wavelet domain registration from a sparse set of coefficients. We make the following contributions: (i) We devise a method of decoupling scale, rotation, and translation parameters in the Haar wavelet domain, (ii) We derive explicit mathematical expressions that define in-band sub-pixel registration in terms of wavelet coefficients, (iii) Using the derived expressions, we propose an approach to achieve in-band subpixel registration, avoiding back and forth transformations. (iv) Our solution remains highly accurate even when a sparse set of coefficients are used, which is due to localization of signals in a sparse set of wavelet coefficients. We demonstrate the accuracy of our method, and show that it outperforms the state-of-the-art on simulated and real data, even when the data is sparse

    Improving Co-registration for Sentinel-1 SAR and Sentinel-2 Optical images

    Full text link
    Co-registering the Sentinel-1 SAR and Sentinel-2 optical data of European Space Agency (ESA) is of great importance for many remote sensing applications. However, we find that there are evident misregistration shifts between the Sentinel-1 SAR and Sentinel-2 optical images that are directly downloaded from the official website. To address that, this paper presents a fast and effective registration method for the two types of images. In the proposed method, a block-based scheme is first designed to extract evenly distributed interest points. Then the correspondences are detected by using the similarity of structural features between the SAR and optical images, where the three dimension (3D) phase correlation (PC) is used as the similarity measure for accelerating image matching. Finally, the obtained correspondences are employed to measure the misregistration shifts between the images. Moreover, to eliminate the misregistration, we use some representative geometric transformation models such as polynomial models, projective models, and rational function models for the co-registration of the two types of images, and compare and analyze their registration accuracy under different numbers of control points and different terrains. Six pairs of the Sentinel-1 SAR L1 and Sentinel-2 optical L1C images covering three different terrains are tested in our experiments. Experimental results show that the proposed method can achieve precise correspondences between the images, and the 3rd. Order polynomial achieves the most satisfactory registration results. Its registration accuracy of the flat areas is less than 1.0 10m pixels, and that of the hilly areas is about 1.5 10m pixels, and that of the mountainous areas is between 1.7 and 2.3 10m pixels, which significantly improves the co-registration accuracy of the Sentinel-1 SAR and Sentinel-2 optical images

    Machine Learning Techniques and Applications For Ground-based Image Analysis

    Full text link
    Ground-based whole sky cameras have opened up new opportunities for monitoring the earth's atmosphere. These cameras are an important complement to satellite images by providing geoscientists with cheaper, faster, and more localized data. The images captured by whole sky imagers can have high spatial and temporal resolution, which is an important pre-requisite for applications such as solar energy modeling, cloud attenuation analysis, local weather prediction, etc. Extracting valuable information from the huge amount of image data by detecting and analyzing the various entities in these images is challenging. However, powerful machine learning techniques have become available to aid with the image analysis. This article provides a detailed walk-through of recent developments in these techniques and their applications in ground-based imaging. We aim to bridge the gap between computer vision and remote sensing with the help of illustrative examples. We demonstrate the advantages of using machine learning techniques in ground-based image analysis via three primary applications -- segmentation, classification, and denoising

    Optimizing Auto-correlation for Fast Target Search in Large Search Space

    Full text link
    In remote sensing image-blurring is induced by many sources such as atmospheric scatter, optical aberration, spatial and temporal sensor integration. The natural blurring can be exploited to speed up target search by fast template matching. In this paper, we synthetically induce additional non-uniform blurring to further increase the speed of the matching process. To avoid loss of accuracy, the amount of synthetic blurring is varied spatially over the image according to the underlying content. We extend transitive algorithm for fast template matching by incorporating controlled image blur. To this end we propose an Efficient Group Size (EGS) algorithm which minimizes the number of similarity computations for a particular search image. A larger efficient group size guarantees less computations and more speedup. EGS algorithm is used as a component in our proposed Optimizing auto-correlation (OptA) algorithm. In OptA a search image is iteratively non-uniformly blurred while ensuring no accuracy degradation at any image location. In each iteration efficient group size and overall computations are estimated by using the proposed EGS algorithm. The OptA algorithm stops when the number of computations cannot be further decreased without accuracy degradation. The proposed algorithm is compared with six existing state of the art exhaustive accuracy techniques using correlation coefficient as the similarity measure. Experiments on satellite and aerial image datasets demonstrate the effectiveness of the proposed algorithm

    Complete Scene Reconstruction by Merging Images and Laser Scans

    Full text link
    Image based modeling and laser scanning are two commonly used approaches in large-scale architectural scene reconstruction nowadays. In order to generate a complete scene reconstruction, an effective way is to completely cover the scene using ground and aerial images, supplemented by laser scanning on certain regions with low texture and complicated structure. Thus, the key issue is to accurately calibrate cameras and register laser scans in a unified framework. To this end, we proposed a three-step pipeline for complete scene reconstruction by merging images and laser scans. First, images are captured around the architecture in a multi-view and multi-scale way and are feed into a structure-from-motion (SfM) pipeline to generate SfM points. Then, based on the SfM result, the laser scanning locations are automatically planned by considering textural richness, structural complexity of the scene and spatial layout of the laser scans. Finally, the images and laser scans are accurately merged in a coarse-to-fine manner. Experimental evaluations on two ancient Chinese architecture datasets demonstrate the effectiveness of our proposed complete scene reconstruction pipeline.Comment: This manuscript has been accepted by IEEE TCSV

    Leveraging Photogrammetric Mesh Models for Aerial-Ground Feature Point Matching Toward Integrated 3D Reconstruction

    Full text link
    Integration of aerial and ground images has been proved as an efficient approach to enhance the surface reconstruction in urban environments. However, as the first step, the feature point matching between aerial and ground images is remarkably difficult, due to the large differences in viewpoint and illumination conditions. Previous studies based on geometry-aware image rectification have alleviated this problem, but the performance and convenience of this strategy is limited by several flaws, e.g. quadratic image pairs, segregated extraction of descriptors and occlusions. To address these problems, we propose a novel approach: leveraging photogrammetric mesh models for aerial-ground image matching. The methods of this proposed approach have linear time complexity with regard to the number of images, can explicitly handle low overlap using multi-view images and can be directly injected into off-the-shelf structure-from-motion (SfM) and multi-view stereo (MVS) solutions. First, aerial and ground images are reconstructed separately and initially co-registered through weak georeferencing data. Second, aerial models are rendered to the initial ground views, in which the color, depth and normal images are obtained. Then, the synthesized color images and the corresponding ground images are matched by comparing the descriptors, filtered by local geometrical information, and then propagated to the aerial views using depth images and patch-based matching. Experimental evaluations using various datasets confirm the superior performance of the proposed methods in aerial-ground image matching. In addition, incorporation of the existing SfM and MVS solutions into these methods enables more complete and accurate models to be directly obtained.Comment: Accepted for publication in ISPRS Journal of Photogrammetry and Remote Sensin
    • …
    corecore