1,662 research outputs found

    A robust optimization approach for magnetic spacecraft attitude stabilization

    Get PDF
    Attitude stabilization of spacecraft using magnetorquers can be achieved by a proportional–derivative-like control algorithm. The gains of this algorithm are usually determined by using a trial-and-error approach within the large search space of the possible values of the gains. However, when finding the gains in this manner, only a small portion of the search space is actually explored. We propose here an innovative and systematic approach for finding the gains: they should be those that minimize the settling time of the attitude error. However, the settling time depends also on initial conditions. Consequently, gains that minimize the settling time for specific initial conditions cannot guarantee the minimum settling time under different initial conditions. Initial conditions are not known in advance. We overcome this obstacle by formulating a min–max problem whose solution provides robust gains, which are gains that minimize the settling time under the worst initial conditions, thus producing good average behavior. An additional difficulty is that the settling time cannot be expressed in analytical form as a function of gains and initial conditions. Hence, our approach uses some derivative-free optimization algorithms as building blocks. These algorithms work without the need to write the objective function analytically: they only need to compute it at a number of points. Results obtained in a case study are very promising

    Determining optimal parameters in magnetic spacecraft stabilization via attitude feedback

    Get PDF
    The attitude control of a spacecraft using magnetorquers can be achieved by a feedback control law which has four design parameters. However, the practical determination of appropriate values for these parameters is a critical open issue. We propose here an innovative systematic approach for finding these values: they should be those that minimize the convergence time to the desired attitude. This a particularly diffcult optimization problem, for several reasons: 1) such time cannot be expressed in analytical form as a function of parameters and initial conditions; 2) design parameters may range over very wide intervals; 3) convergence time depends also on the initial conditions of the spacecraft, which are not known in advance. To overcome these diffculties, we present a solution approach based on derivative-free optimization. These algorithms do not need to write analytically the objective function: they only need to compute it in a number of points. We also propose a fast probing technique to identify which regions of the search space have to be explored densely. Finally, we formulate a min-max model to find robust parameters, namely design parameters that minimize convergence time under the worst initial conditions. Results are very promising

    Parameter Optimization for Spacecraft Attitude Stabilization Using Magnetorquers

    Get PDF
    The attitude stabilization of a spacecraft that uses magnetorquers as torque actuators is a very important task. Depending on the availability of angular rate sensors on the spacecraft, control laws can be designed either by using measurements of both attitude and attitude rate or by using measurements of attitude only. The parameters of both types of control laws are usually determined by means of a simple trial-and-error approach. Evidently, such an approach has several drawbacks. This chapter describes recently developed systematic approaches for determining the parameters using derivative-free optimization techniques. These approaches allow to find the parameter values that minimize the settling time of the attitude error or an indirect measure of this error. However, such cost indices depend also on initial conditions of the spacecraft, which are not known in advance. Thus, a min-max optimization problem is formulated, whose solution provides values of the parameters minimizing the chosen cost index under the worst initial conditions. The chapter also provides numerical results showing the effectiveness of the described approaches

    Practical Implementation of Attitude-Control Algorithms for an Underactuated Satellite

    Get PDF
    The challenging problem of controlling the attitude of satellites subject to actuator failures has been the subject of increased attention in recent years. The problem of controlling the attitude of a satellite on all three axes with two reaction wheels is addressed in this paper. This system is controllable in a zero-momentum mode. Three-axis attitude stability is proven by imposing a singular quaternion feedback law to the angular velocity trajectories.Two approaches are proposed and compared to achieve three-axis control: The first one does not require angular velocity measurements and is based on the assumption of a perfect zero momentum, while the second approach consists of tracking the desired angular velocity trajectories. The full-state feedback is a nonlinear singular controller. In-orbit tests of the first approach provide an unprecedented practical proof of three-axis stability with two control torques. The angular velocity tracking approach is shown to be less efficient using the nonlinear singular controller. However, when inverse optimization theory is applied to enhance the nonlinear singular controller, the angular velocity tracking approach is shown to be the most efficient. The resulting switched inverse optimal controller allows for a significant enhancement of settling time, for a prescribed level of the integrated torque

    Advances in Spacecraft Attitude Control

    Get PDF
    Spacecraft attitude maneuvers comply with Euler's moment equations, a set of three nonlinear, coupled differential equations. Nonlinearities complicate the mathematical treatment of the seemingly simple action of rotating, and these complications lead to a robust lineage of research. This book is meant for basic scientifically inclined readers, and commences with a chapter on the basics of spaceflight and leverages this remediation to reveal very advanced topics to new spaceflight enthusiasts. The topics learned from reading this text will prepare students and faculties to investigate interesting spaceflight problems in an era where cube satellites have made such investigations attainable by even small universities. It is the fondest hope of the editor and authors that readers enjoy this book

    Gain Selection for Attitude Stabilization of Earth-Pointing Spacecraft Using Magnetorquers

    Get PDF
    AbstractThis paper considers a feedback control law that achieves attitude stabilization for Earth-pointing spacecraft using only magnetorquers as torque actuators. The control law is proportional derivative (PD)-like with matrix gains, and it guarantees asymptotic stability. The PD matrix gains are determined through the numerical solution of a periodic linear quadric regulator problem. A case study shows the effectiveness of the considered control law, and specifically of the gain selection method, in a simplified simulation scenario

    Precise Attitude Control Techniques: Performance Analysis From Classical to Variable Structure Control

    Get PDF
    Small satellites have begun to play an important role in space research, especially about new technology development and attitude control. The main objective of this research is the design of a robust flight software, in which the key feature is suitably designed control laws to guarantee the robustness to uncertainties and external disturbances. To accomplish the desired mission task and to design the robust software, a classical Proportional Integrative Derivative (PID) method and two robust control system technologies are provided, focusing on applications related to small satellites and on the real-time implementability. Starting from PID approach, simulations are performed to prove the effectiveness of the proposed control systems in different scenarios and in terms of pointing stability and accuracy, including uncertainties, measurement errors, and hardware constraints. Different control techniques are analyzed: (i) a tube-based robust model predictive control (MPC) and (ii) a variable gain continuous twisting (CT) sliding mode controller. Both controllers are compared with loop shaping PID controller

    Robust Fault-Tolerant Control for Satellite Attitude Stabilization Based on Active Disturbance Rejection Approach with Artificial Bee Colony Algorithm

    Get PDF
    This paper proposed a robust fault-tolerant control algorithm for satellite stabilization based on active disturbance rejection approach with artificial bee colony algorithm. The actuating mechanism of attitude control system consists of three working reaction flywheels and one spare reaction flywheel. The speed measurement of reaction flywheel is adopted for fault detection. If any reaction flywheel fault is detected, the corresponding fault flywheel is isolated and the spare reaction flywheel is activated to counteract the fault effect and ensure that the satellite is working safely and reliably. The active disturbance rejection approach is employed to design the controller, which handles input information with tracking differentiator, estimates system uncertainties with extended state observer, and generates control variables by state feedback and compensation. The designed active disturbance rejection controller is robust to both internal dynamics and external disturbances. The bandwidth parameter of extended state observer is optimized by the artificial bee colony algorithm so as to improve the performance of attitude control system. A series of simulation experiment results demonstrate the performance superiorities of the proposed robust fault-tolerant control algorithm

    Integrated Optimal and Robust Control of Spacecraft in Proximity Operations

    Get PDF
    With the rapid growth of space activities and advancement of aerospace science and technology, many autonomous space missions have been proliferating in recent decades. Control of spacecraft in proximity operations is of great importance to accomplish these missions. The research in this dissertation aims to provide a precise, efficient, optimal, and robust controller to ensure successful spacecraft proximity operations. This is a challenging control task since the problem involves highly nonlinear dynamics including translational motion, rotational motion, and flexible structure deformation and vibration. In addition, uncertainties in the system modeling parameters and disturbances make the precise control more difficult. Four control design approaches are integrated to solve this challenging problem. The first approach is to consider the spacecraft rigid body translational and rotational dynamics together with the flexible motion in one unified optimal control framework so that the overall system performance and constraints can be addressed in one optimization process. The second approach is to formulate the robust control objectives into the optimal control cost function and prove the equivalency between the robust stabilization problem and the transformed optimal control problem. The third approach is to employ the è-D technique, a novel optimal control method that is based on a perturbation solution to the Hamilton-Jacobi-Bellman equation, to solve the nonlinear optimal control problem obtained from the indirect robust control formulation. The resultant optimal control law can be obtained in closedorm, and thus facilitates the onboard implementation. The integration of these three approaches is called the integrated indirect robust control scheme. The fourth approach is to use the inverse optimal adaptive control method combined with the indirect robust control scheme to alleviate the conservativeness of the indirect robust control scheme by using online parameter estimation such that adaptive, robust, and optimal properties can all be achieved. To show the effectiveness of the proposed control approaches, six degree-offreedom spacecraft proximity operation simulation is conducted and demonstrates satisfying performance under various uncertainties and disturbances

    The Phoenix Pluto Probe

    Get PDF
    A design proposal for an unmanned probe to Pluto is presented. The topics covered include: (1) scientific instrumentation; (2) mission management, planning, and costing; (3) power and propulsion system; (4) structural subsystem; (5) command, control, and communication; and (6) attitude and articulation control
    • …
    corecore