839 research outputs found

    A robust numerical method to study oscillatory instability of gap solitary waves

    Get PDF
    The spectral problem associated with the linearization about solitary waves of spinor systems or optical coupled mode equations supporting gap solitons is formulated in terms of the Evans function, a complex analytic function whose zeros correspond to eigenvalues. These problems may exhibit oscillatory instabilities where eigenvalues detach from the edges of the continuous spectrum, so called edge bifurcations. A numerical framework, based on a fast robust shooting algorithm using exterior algebra is described. The complete algorithm is robust in the sense that it does not produce spurious unstable eigenvalues. The algorithm allows to locate exactly where the unstable discrete eigenvalues detach from the continuous spectrum. Moreover, the algorithm allows for stable shooting along multi-dimensional stable and unstable manifolds. The method is illustrated by computing the stability and instability of gap solitary waves of a coupled mode model.Comment: key words: gap solitary wave, numerical Evans function, edge bifurcation, exterior algebra, oscillatory instability, massive Thirring model. accepted for publication in SIAD

    A Robust Numerical Method to Study Oscillatory Instability of Gap Solitary Waves *

    Get PDF
    Abstract. The spectral problem associated with the linearization about solitary waves of spinor systems or optical coupled mode equations supporting gap solitons is formulated in terms of the Evans function, a complex analytic function whose zeros correspond to eigenvalues. These problems may exhibit oscillatory instabilities where eigenvalues detach from the edges of the continuous spectrum-socalled edge bifurcations. A numerical framework, based on a fast robust shooting algorithm using exterior algebra, is described. The complete algorithm is robust in the sense that it does not produce spurious unstable eigenvalues. The algorithm allows us to locate exactly where the unstable discrete eigenvalues detach from the continuous spectrum. Moreover, the algorithm allows for stable shooting along multidimensional stable and unstable manifolds. The method is illustrated by computing the stability and instability of gap solitary waves of a coupled mode model

    Stability of Spatial Optical Solitons

    Full text link
    We present a brief overview of the basic concepts of the soliton stability theory and discuss some characteristic examples of the instability-induced soliton dynamics, in application to spatial optical solitons described by the NLS-type nonlinear models and their generalizations. In particular, we demonstrate that the soliton internal modes are responsible for the appearance of the soliton instability, and outline an analytical approach based on a multi-scale asymptotic technique that allows to analyze the soliton dynamics near the marginal stability point. We also discuss some results of the rigorous linear stability analysis of fundamental solitary waves and nonlinear impurity modes. Finally, we demonstrate that multi-hump vector solitary waves may become stable in some nonlinear models, and discuss the examples of stable (1+1)-dimensional composite solitons and (2+1)-dimensional dipole-mode solitons in a model of two incoherently interacting optical beams.Comment: 34 pages, 9 figures; to be published in: "Spatial Optical Solitons", Eds. W. Torruellas and S. Trillo (Springer, New York

    Discrete breathers at the interface between a diatomic and monoatomic granular chain

    Get PDF
    In the present work, we develop a systematic examination of the existence, stability and dynamical properties of a discrete breather at the interface between a diatomic and a monoatomic granular chain. We remarkably find that such an "interface breather" is more robust than its bulk diatomic counterpart throughout the gap of the linear spectrum. The latter linear spectral gap needs to exist for the breather state to arise and the relevant spectral conditions are discussed. We illustrate the minimal excitation conditions under which such an interface breather can be "nucleated" and analyze its apparently weak interaction with regular highly nonlinear solitary waveforms.Comment: 11 pages, 10 figure

    Solitons in a system of three linearly coupled fiber gratings

    Full text link
    We introduce a model of three parallel-coupled nonlinear waveguiding cores equipped with Bragg gratings (BGs), which form an equilateral triangle. The objective of the work is to investigate solitons and their stability in this system. New results are also obtained for the earlier investigated dual-core system. Families of symmetric and antisymmetric solutions are found analytically, extending beyond the spectral gap in both the dual- and tri-core systems. Moreover, these families persist in the case (strong coupling between the cores) when there is no gap in the system's linear spectrum. Three different types of asymmetric solitons are found in the tri-core system. They exist only inside the spectral gap, but asymmetric solitons with nonvanishing tails are found outside the gap as well. The symmetric solitons are stable up to points at which two types of asymmetric solitons bifurcate from them. Beyond the bifurcation, one type of the asymmetric solitons is stable, and the other is not. Then, they swap their stability. In both the dual- and tri-core systems, the stability region of the symmetric solitons extends far beyond the gap, persisting in the case when the system has no gap at all. The whole stability region of antisymmetric solitons is located outside the gap. Thus, solitons in multi-core BGs can be observed experimentally in a much broader frequency band than in the single-core one, and in a wider parameter range than it could be expected.Comment: 20 text pages and 11 figure pages at the end of the document; European Physical Journal D, in pres

    Dark-bright gap solitons in coupled-mode one-dimensional saturable waveguide arrays

    Get PDF
    In the present work, we consider the dynamics of dark solitons as one mode of a defocusing photorefractive lattice coupled with bright solitons as a second mode of the lattice. Our investigation is motivated by an experiment which illustrates that such coupled states can exist with both components in the first gap of the linear band spectrum. This finding is further extended by the examination of different possibilities from a theoretical perspective, such as symbiotic ones where the bright component is supported by states of the dark component in the first or second gap, or non-symbiotic ones where the bright soliton is also a first-gap state coupled to a first or second gap state of the dark component. While the obtained states are generally unstable, these instabilities typically bear fairly small growth rates which enable their observation for experimentally relevant propagation distances

    Matter-wave solitons with a periodic, piecewise-constant nonlinearity

    Get PDF
    Motivated by recent proposals of ``collisionally inhomogeneous'' Bose-Einstein condensates (BECs), which have a spatially modulated scattering length, we study the existence and stability properties of bright and dark matter-wave solitons of a BEC characterized by a periodic, piecewise-constant scattering length. We use a ``stitching'' approach to analytically approximate the pertinent solutions of the underlying nonlinear Schr\"odinger equation by matching the wavefunction and its derivatives at the interfaces of the nonlinearity coefficient. To accurately quantify the stability of bright and dark solitons, we adapt general tools from the theory of perturbed Hamiltonian systems. We show that solitons can only exist at the centers of the constant regions of the piecewise-constant nonlinearity. We find both stable and unstable configurations for bright solitons and show that all dark solitons are unstable, with different instability mechanisms that depend on the soliton location. We corroborate our analytical results with numerical computations.Comment: 16 pages, 7 figures (some with multiple parts), to appear in Physical Review

    Solitary waves in the Nonlinear Dirac Equation

    Get PDF
    In the present work, we consider the existence, stability, and dynamics of solitary waves in the nonlinear Dirac equation. We start by introducing the Soler model of self-interacting spinors, and discuss its localized waveforms in one, two, and three spatial dimensions and the equations they satisfy. We present the associated explicit solutions in one dimension and numerically obtain their analogues in higher dimensions. The stability is subsequently discussed from a theoretical perspective and then complemented with numerical computations. Finally, the dynamics of the solutions is explored and compared to its non-relativistic analogue, which is the nonlinear Schr{\"o}dinger equation. A few special topics are also explored, including the discrete variant of the nonlinear Dirac equation and its solitary wave properties, as well as the PT-symmetric variant of the model
    corecore