43 research outputs found

    Incentive-aware Contextual Pricing with Non-parametric Market Noise

    Full text link
    We consider a dynamic pricing problem for repeated contextual second-price auctions with strategic buyers whose goals are to maximize their long-term time discounted utility. The seller has very limited information about buyers' overall demand curves, which depends on dd-dimensional context vectors characterizing auctioned items, and a non-parametric market noise distribution that captures buyers' idiosyncratic tastes. The noise distribution and the relationship between the context vectors and buyers' demand curves are both unknown to the seller. We focus on designing the seller's learning policy to set contextual reserve prices where the seller's goal is to minimize his regret for revenue. We first propose a pricing policy when buyers are truthful and show that it achieves a TT-period regret bound of O~(dT)\tilde{\mathcal{O}}(\sqrt{dT}) against a clairvoyant policy that has full information of the buyers' demand. Next, under the setting where buyers bid strategically to maximize their long-term discounted utility, we develop a variant of our first policy that is robust to strategic (corrupted) bids. This policy incorporates randomized "isolation" periods, during which a buyer is randomly chosen to solely participate in the auction. We show that this design allows the seller to control the number of periods in which buyers significantly corrupt their bids. Because of this nice property, our robust policy enjoys a TT-period regret of O~(dT)\tilde{\mathcal{O}}(\sqrt{dT}), matching that under the truthful setting up to a constant factor that depends on the utility discount factor

    Dynamic Incentive-aware Learning: Robust Pricing in Contextual Auctions

    Full text link
    Motivated by pricing in ad exchange markets, we consider the problem of robust learning of reserve prices against strategic buyers in repeated contextual second-price auctions. Buyers' valuations for an item depend on the context that describes the item. However, the seller is not aware of the relationship between the context and buyers' valuations, i.e., buyers' preferences. The seller's goal is to design a learning policy to set reserve prices via observing the past sales data, and her objective is to minimize her regret for revenue, where the regret is computed against a clairvoyant policy that knows buyers' heterogeneous preferences. Given the seller's goal, utility-maximizing buyers have the incentive to bid untruthfully in order to manipulate the seller's learning policy. We propose learning policies that are robust to such strategic behavior. These policies use the outcomes of the auctions, rather than the submitted bids, to estimate the preferences while controlling the long-term effect of the outcome of each auction on the future reserve prices. When the market noise distribution is known to the seller, we propose a policy called Contextual Robust Pricing (CORP) that achieves a T-period regret of O(dlog(Td)log(T))O(d\log(Td) \log (T)), where dd is the dimension of {the} contextual information. When the market noise distribution is unknown to the seller, we propose two policies whose regrets are sublinear in TT.Comment: Accepted for publication in Operations Research Journal (An earlier version of this paper accepted to NeurIPS 2019.

    Contextual Dynamic Pricing with Strategic Buyers

    Full text link
    Personalized pricing, which involves tailoring prices based on individual characteristics, is commonly used by firms to implement a consumer-specific pricing policy. In this process, buyers can also strategically manipulate their feature data to obtain a lower price, incurring certain manipulation costs. Such strategic behavior can hinder firms from maximizing their profits. In this paper, we study the contextual dynamic pricing problem with strategic buyers. The seller does not observe the buyer's true feature, but a manipulated feature according to buyers' strategic behavior. In addition, the seller does not observe the buyers' valuation of the product, but only a binary response indicating whether a sale happens or not. Recognizing these challenges, we propose a strategic dynamic pricing policy that incorporates the buyers' strategic behavior into the online learning to maximize the seller's cumulative revenue. We first prove that existing non-strategic pricing policies that neglect the buyers' strategic behavior result in a linear Ω(T)\Omega(T) regret with TT the total time horizon, indicating that these policies are not better than a random pricing policy. We then establish that our proposed policy achieves a sublinear regret upper bound of O(T)O(\sqrt{T}). Importantly, our policy is not a mere amalgamation of existing dynamic pricing policies and strategic behavior handling algorithms. Our policy can also accommodate the scenario when the marginal cost of manipulation is unknown in advance. To account for it, we simultaneously estimate the valuation parameter and the cost parameter in the online pricing policy, which is shown to also achieve an O(T)O(\sqrt{T}) regret bound. Extensive experiments support our theoretical developments and demonstrate the superior performance of our policy compared to other pricing policies that are unaware of the strategic behaviors

    On the Interplay between Social Welfare and Tractability of Equilibria

    Full text link
    Computational tractability and social welfare (aka. efficiency) of equilibria are two fundamental but in general orthogonal considerations in algorithmic game theory. Nevertheless, we show that when (approximate) full efficiency can be guaranteed via a smoothness argument \`a la Roughgarden, Nash equilibria are approachable under a family of no-regret learning algorithms, thereby enabling fast and decentralized computation. We leverage this connection to obtain new convergence results in large games -- wherein the number of players n1n \gg 1 -- under the well-documented property of full efficiency via smoothness in the limit. Surprisingly, our framework unifies equilibrium computation in disparate classes of problems including games with vanishing strategic sensitivity and two-player zero-sum games, illuminating en route an immediate but overlooked equivalence between smoothness and a well-studied condition in the optimization literature known as the Minty property. Finally, we establish that a family of no-regret dynamics attains a welfare bound that improves over the smoothness framework while at the same time guaranteeing convergence to the set of coarse correlated equilibria. We show this by employing the clairvoyant mirror descent algortihm recently introduced by Piliouras et al.Comment: To appear at NeurIPS 202

    A Combinatorial-Bandit Algorithm for the Online Joint Bid/Budget Optimization of Pay-per-Click Advertising Campaigns

    Get PDF
    Pay-per-click advertising includes various formats (e.g., search, contextual, and social) with a total investment of more than 140 billion USD per year. An advertising campaign is composed of some subcampaigns-each with a different ad-and a cumulative daily budget. The allocation of the ads is ruled exploiting auction mechanisms. In this paper, we propose, for the first time to the best of our knowledge, an algorithm for the online joint bid/budget optimization of pay-per-click multi-channel advertising campaigns. We formulate the optimization problem as a combinatorial bandit problem, in which we use Gaussian Processes to estimate stochastic functions, Bayesian bandit techniques to address the exploration/exploitation problem, and a dynamic programming technique to solve a variation of the Multiple-Choice Knapsack problem. We experimentally evaluate our algorithm both in simulation-using a synthetic setting generated from real data from Yahoo!-and in a real-world application over an advertising period of two months

    Exploring the Tradeoff between Competitive Ratio and Variance in Online-Matching Markets

    Full text link
    In this paper, we propose an online-matching-based model to study the assignment problems arising in a wide range of online-matching markets, including online recommendations, ride-hailing platforms, and crowdsourcing markets. It features that each assignment can request a random set of resources and yield a random utility, and the two (cost and utility) can be arbitrarily correlated with each other. We present two linear-programming-based parameterized policies to study the tradeoff between the \emph{competitive ratio} (CR) on the total utilities and the \emph{variance} on the total number of matches (unweighted version). The first one (SAMP) is to sample an edge according to the distribution extracted from the clairvoyant optimal, while the second (ATT) features a time-adaptive attenuation framework that leads to an improvement over the state-of-the-art competitive-ratio result. We also consider the problem under a large-budget assumption and show that SAMP achieves asymptotically optimal performance in terms of competitive ratio.Comment: This paper was accepted to the 18th Conference on Web and Internet Economics (WINE), 202

    Peak reduction in decentralised electricity systems : markets and prices for flexible planning

    Get PDF
    In contemporary societies, industrial processes as well as domestic activities rely to a large degree on a well-functioning electricity system. This reliance exists both structurally (the system should always be available) and economically (the prices for electricity affect the costs of operating a business and the costs of living). After many decades of stability in engineering principles and related economic paradigms, new developments require us to reconsider how electricity is distributed and paid for.Twowell-known examples of important technological developments in this regard are decentralised renewable energy generation (e.g. solar and wind power) and electric vehicles. They promise to be highly useful, for instance because they allow us to decrease our CO2 emissions and our dependence on energy imports. However, a widespread introduction of these (and related) technologies requires significant engineering efforts. In particular, two challenges to themanagement of electricity systems are of interest to the scope of this dissertation. First, the usage of these technologies has significant effects on howwell (part of) supply and demand can be planned ahead of time and balanced in real time. Planning and balancing are important activities in electricity distribution for keeping the number of peaks low (peaks can damage network hardware and lead to high prices). It can become more difficult to plan and balance in future electricity systems, because supply will partly depend on intermittent sunshine and wind patterns, and demand will partly depend on dynamic mobility patterns of electric vehicle drivers. Second, these technologies are often placed in the lower voltage (LV) tiers of the grid in a decentralised manner, as opposed to conventional energy sources, which are located in higher voltage (HV) tiers in central positions. This is introducing bi-directional power flows on the grid, and it significantly increases the number of actors in the electricity systems whose day-to-day decisionmaking about consumption and generation (e.g. electric vehicles supplying electricity back to the network) has significant impacts on the electricity system.In this dissertation, we look into dynamic pricing and markets in order to achieve allocations (of electricity and money) which are acceptable in future electricity systems. Dynamic pricing and markets are concepts that are highly useful to enable efficient allocations of goods between producers and consumers. Currently, they are being used to allocate electricity between wholesale traders. In recent years, the roles of the wholesale producer and the retailer have been unbundled in many countries of the world, which is often referred to as “market liberalisation”. This is supposed to increase competition and give end consumers more choice in contracts. Market liberalisation creates opportunities to design markets and dynamic pricing approaches that can tackle the aforementioned challenges in future electricity systems. However, they also introduce new challenges themselves, such as the acceptance of price fluctuations by consumers.The research objective of this dissertation is to develop market mechanisms and dynamic pricing strategies which can deal with the challenges mentioned above and achieve acceptable outcomes. To this end, we formulate three major research questions:First, can we design pricing mechanisms for electricity systems that support two necessary featureswell, which are not complementary—namely to encourage adaptations in electricity consumption and generation on short notice (by participants who have this flexibility), but also to enable planning ahead of electricity consumption and generation (for participants who can make use of planning)?Second, the smart grid vision (among others) posits that in future electricity systems, outcomeswill be jointly determined by a large number of (possibly) small actors and allocations will be mademore frequently than today. Which pricing mechanisms do not require high computational capabilities from the participants, limit the exposure of small participants to risk and are able to find allocations fast?Third, automated grid protection against peaks is a crucial innovation step for network operators, but a costly infrastructure program. Is it possible for smart devices to combine the objective of protecting network assets (e.g. cables) from overloading with applying buying and selling strategies in a dynamic pricing environment, such that the devices can earn back parts of their own costs?In order to answer the research questions, our methods are as follows: We consider four problems which are likely to occur in future electricity systems and are of relevance to our research objective. For each problem, we develop an agent-based model and propose a novel solution. Then, we evaluate our proposed solution using stochastic computational simulations in parameterised scenarios. We thus make the following four contributions:In Chapter 3,we design a market mechanism in which both binding commitments and optional reserve capacity are explicitly represented in the bid format, which can facilitate price finding and planning in future electricity systems (and therefore gives answers to our first research question). We also show that in this mechanism, flexible consumers are incentivised to offer reserve capacity ahead of time, whichwe prove for the case of perfect competition and showin simulations for the case of imperfect competition. We are able to show in a broad range of scenarios that our proposed mechanism has no economic drawbacks for participants. Furthermore (giving answers to our second research question), the mechanism requires less computational capabilities in order to participate in it than a contemporary wholesale electricitymarket with comparable features for planning ahead.In Chapter 4, we consider the complexity of dynamic pricing strategies that retailers could use in future electricity systems (this gives answers to our first, but foremost to our second research question). We argue that two important features of pricing strategies are not complementary—namely power peak reduction and comprehensibility of prices—and we propose indicators for the comprehensibility of a pricing strategy from the perspective of consumers. We thereby add a novel perspective for the design and evaluation of pricing strategies.In Chapter 5, we consider dynamic pricing mechanisms where the price is set by a single seller. In particular, we develop pricing strategies for a seller (a retailer) who commits to respect an upper limit on its unit prices (this gives answers to both our first and second research question). Upper price limits reduce exposure of market participants to price fluctuations. We show that employing the proposed dynamic pricing strategies reduces consumption peaks, although their parameters are being simultaneously optimised for themaximisation of retailer profits.In Chapter 6, we develop control algorithms for a small storage device which is connected to a low voltage cable. These algorithms can be used to reach decisions about when to charge and when to discharge the storage device, in order to protect the cable from overloading as well as to maximise revenue from buying and selling (this gives answers to our third research question). We are able to show in computational simulations that our proposed strategies perform well when compared to an approximated theoretical lower cost bound. We also demonstrate the positive effects of one of our proposed strategies in a laboratory setupwith real-world cable hardware.The results obtained in this dissertation advance the state of the art in designing pricing mechanisms and strategies which are useful for many use cases in future decentralised electricity systems. The contributions made can provide two positive effects: First, they are able to avoid or reduce unwanted extreme situations, often related to consumption or production peaks. Second, they are suitable for small actors who do not have much computation power but still need to participate in future electricity systems where fast decision making is needed
    corecore