48 research outputs found

    A Robust Method to Count and Locate Audio Sources in a Stereophonic Linear Anechoic Mixture

    Get PDF
    International audienceWe propose a new method, called DEMIX Anechoic, to estimate the mixing conditions, i.e. number of audio sources plus attenuation and time delay of each sources, in an underdetermined anechoic mixture. The method relies on the assumption that in the neighborhood of some time-frequency points, only one source contributes to the mixture. Such time-frequency points, located with a local confidence measure, provide estimates of the attenuation, as well as the phase difference at some frequency, of the corresponding source. The time delay parameters are estimated, by a method similar to GCC-PHAT, on points having close attenuations. As opposed to DUET like methods, our method can estimate time-delay higher than only one sample. Experiments show that DEMIX Anechoic estimates, in more than 65% of the cases, the number of directions until 6 sources and outperforms DUET in the accuracy of the estimation by a factor of 10

    Blind Spectral-GMM Estimation for Underdetermined Instantaneous Audio Source Separation

    Get PDF
    The underdetermined blind audio source separation problem is often addressed in the time-frequency domain by assuming that each time-frequency point is an independently distributed random variable. Other approaches which are not blind assume a more structured model, like the Spectral Gaussian Mixture Models (Spectral-GMMs), thus exploiting statistical diversity of audio sources in the separation process. However, in this last approach, Spectral-GMMs are supposed to be learned from some training signals. In this paper, we propose a new approach for learning Spectral-GMMs of the sources without the need of using training signals. The proposed blind method significantly outperforms state-of-the-art approaches on stereophonic instantaneous music mixtures

    Application of sound source separation methods to advanced spatial audio systems

    Full text link
    This thesis is related to the field of Sound Source Separation (SSS). It addresses the development and evaluation of these techniques for their application in the resynthesis of high-realism sound scenes by means of Wave Field Synthesis (WFS). Because the vast majority of audio recordings are preserved in twochannel stereo format, special up-converters are required to use advanced spatial audio reproduction formats, such as WFS. This is due to the fact that WFS needs the original source signals to be available, in order to accurately synthesize the acoustic field inside an extended listening area. Thus, an object-based mixing is required. Source separation problems in digital signal processing are those in which several signals have been mixed together and the objective is to find out what the original signals were. Therefore, SSS algorithms can be applied to existing two-channel mixtures to extract the different objects that compose the stereo scene. Unfortunately, most stereo mixtures are underdetermined, i.e., there are more sound sources than audio channels. This condition makes the SSS problem especially difficult and stronger assumptions have to be taken, often related to the sparsity of the sources under some signal transformation. This thesis is focused on the application of SSS techniques to the spatial sound reproduction field. As a result, its contributions can be categorized within these two areas. First, two underdetermined SSS methods are proposed to deal efficiently with the separation of stereo sound mixtures. These techniques are based on a multi-level thresholding segmentation approach, which enables to perform a fast and unsupervised separation of sound sources in the time-frequency domain. Although both techniques rely on the same clustering type, the features considered by each of them are related to different localization cues that enable to perform separation of either instantaneous or real mixtures.Additionally, two post-processing techniques aimed at improving the isolation of the separated sources are proposed. The performance achieved by several SSS methods in the resynthesis of WFS sound scenes is afterwards evaluated by means of listening tests, paying special attention to the change observed in the perceived spatial attributes. Although the estimated sources are distorted versions of the original ones, the masking effects involved in their spatial remixing make artifacts less perceptible, which improves the overall assessed quality. Finally, some novel developments related to the application of time-frequency processing to source localization and enhanced sound reproduction are presented.Cobos Serrano, M. (2009). Application of sound source separation methods to advanced spatial audio systems [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/8969Palanci

    Proceedings of the EAA Spatial Audio Signal Processing symposium: SASP 2019

    Get PDF
    International audienc

    Two-Microphone Separation of Speech Mixtures

    Get PDF

    Real-time Sound Source Separation For Music Applications

    Get PDF
    Sound source separation refers to the task of extracting individual sound sources from some number of mixtures of those sound sources. In this thesis, a novel sound source separation algorithm for musical applications is presented. It leverages the fact that the vast majority of commercially recorded music since the 1950s has been mixed down for two channel reproduction, more commonly known as stereo. The algorithm presented in Chapter 3 in this thesis requires no prior knowledge or learning and performs the task of separation based purely on azimuth discrimination within the stereo field. The algorithm exploits the use of the pan pot as a means to achieve image localisation within stereophonic recordings. As such, only an interaural intensity difference exists between left and right channels for a single source. We use gain scaling and phase cancellation techniques to expose frequency dependent nulls across the azimuth domain, from which source separation and resynthesis is carried out. The algorithm is demonstrated to be state of the art in the field of sound source separation but also to be a useful pre-process to other tasks such as music segmentation and surround sound upmixing

    Source Separation and DOA Estimation for Underdetermined Auditory Scene

    Get PDF

    Guided Matching Pursuit and its Application to Sound Source Separation

    Get PDF
    In the last couple of decades there has been an increasing interest in the application of source separation technologies to musical signal processing. Given a signal that consists of a mixture of musical sources, source separation aims at extracting and/or isolating the signals that correspond to the original sources. A system capable of high quality source separation could be an invaluable tool for the sound engineer as well as the end user. Applications of source separation include, but are not limited to, remixing, up-mixing, spatial re-configuration, individual source modification such as filtering, pitch detection/correction and time stretching, music transcription, voice recognition and source-specific audio coding to name a few. Of particular interest is the problem of separating sources from a mixture comprising two channels (2.0 format) since this is still the most commonly used format in the music industry and most domestic listening environments. When the number of sources is greater than the number of mixtures (which is usually the case with stereophonic recordings) then the problem of source separation becomes under-determined and traditional source separation techniques, such as “Independent Component Analysis” (ICA) cannot be successfully applied. In such cases a family of techniques known as “Sparse Component Analysis” (SCA) are better suited. In short a mixture signal is decomposed into a new domain were the individual sources are sparsely represented which implies that their corresponding coefficients will have disjoint (or almost) disjoint supports. Taking advantage of this property along with the spatial information within the mixture and other prior information that could be available, it is possible to identify the sources in the new domain and separate them by going back to the time domain. It is a fact that sparse representations lead to higher quality separation. Regardless, the most commonly used front-end for a SCA system is the ubiquitous short-time Fourier transform (STFT) which although is a sparsifying transform it is not the best choice for this job. A better alternative is the matching pursuit (MP) decomposition. MP is an iterative algorithm that decomposes a signal into a set of elementary waveforms called atoms chosen from an over-complete dictionary in such a way so that they represent the inherent signal structures. A crucial part of MP is the creation of the dictionary which directly affects the results of the decomposition and subsequently the quality of source separation. Selecting an appropriate dictionary could prove a difficult task and an adaptive approach would be appropriate. This work proposes a new MP variant termed guided matching pursuit (GMP) which adds a new pre-processing step into the main sequence of the MP algorithm. The purpose of this step is to perform an analysis of the signal and extract important features, termed guide maps, that are used to create dynamic mini-dictionaries comprising atoms which are expected to correlate well with the underlying signal structures thus leading to focused and more efficient searches around particular supports of the signal. This algorithm is accompanied by a modular and highly flexible MATLAB implementation which is suited to the processing of long duration audio signals. Finally the new algorithm is applied to the source separation of two-channel linear instantaneous mixtures and preliminary testing demonstrates that the performance of GMP is on par with the performance of state of the art systems

    The role that sound spatialization plays in improving performance in an interactive installation : study of the correlation between gesture and localization of sound sources in space

    Get PDF
    The main objective of this research work is to study the correlation between gesture and localization of sound sources in space within the framework of interactive installations, based on theories of hearing and gesture. We have therefore chosen the experimental method by developing an interactive installation with which we carry out three different experiments, in which a subject’s hand is tracked by a Microsoft Kinect depth camera (motion capture) and a deictic gesture is used to trigger recorded music sounds and identify their localization in the horizontal plane. Thus, we manipulate the direction of sound and we measure the percentage of correct perceptual sound source localizations resulting from the participant’s responses in an Inquiry Mode Questionnaire in comparison with the actual directions of the gesture and perceptual sound sources provided by software. Descriptive and inferential statistics is applied to the collected data. The main results show that it is easier to define the origin of sound and that auditory perception is more accurate when its incidence is frontal in the horizontal plane, just as sound source localization theory predicts. Whereas 86.1% of all volunteers consider that their gesture coincides with the origin of sound in experiment 1, in which the use of their gesture in a certain direction produces a sound from that direction, only 58.1% admit the same in experiment 3, in which the same gesture is used to identify the system-predetermined localization of a perceptual sound source in an angle of 260o around a subject. At least 55.9% of all participants do not perceive that their gesture cannot coincide with the origin of sound in experiment 2, since sound is produced from the opposite surround direction, which seems to demonstrate that, when sounds are produced frontally or from the back and a person has the task of controlling their motion with a deictic gesture at the same time, his or her ability to identify the origin of sound generally diminishes, in addition to the already well-known reduced ability to identify it when it is in the median plane, if the head is not rotated. We therefore conclude that there is a relatively high correlation between gesture and localization of sound sources in space, but this is not as perfect as it could be owing to the limitations of the human auditory system and to the natural dependence of head movement on gesture.O objectivo principal deste trabalho de pesquisa é o de estudar a correlação entre gesto e localização de fontes sonoras no espaço, no âmbito das instalações interactivas, com base nas teorias da audição e do gesto. Na ocasisão em que começamos a nossa investigação verificámos que havia vários estudos que abordavam os assuntos “gesto” e “localização de fontes sonoras” de diversas maneiras: 1) de forma independente um do outro e/ou noutros contextos distintos dos das instalações interactivas, como por exemplo em Blauert (1997), Pulkki (1999) Pulkki & Karjalainen (2001), Pulkki (2001a), Bates et al. (2007), Hammershøi (2009), McNeill (1992), Coutaz & Crowley (1995), Choi (2000), Cadoz & Wanderley (2000), Nehaniv (2005), Campbell (2005), ou Godøy & Leman (2010); 2) de um ponto de vista mais técnico, como por exemplo em Harada et al. (1992), Jensenius et al. (2006), Marshall et al. (2006), Schacher (2007), Neukom & Schacher (2008), Zelli (2009), Marshall et al. (2009), Bhuiyan & Picking (2009), ou Schumacher & Bresson (2010); ou 3) de um ponto de vista mais artístico, como em Bencina et al. (2008) ou Grigoriou & Floros (2010). Havia, no entanto, muito poucos estudos a envolver ou a abordar ambos os assuntos e a analisar de maneira conjugada as suas relações de um ponto de vista mais perceptual, como por exemplo em Gröhn (2002), de Götzen (2004) ou Marentakis et al. (2008). Foi esta última perspectiva que decidimos seguir e que aqui exploramos. Desta forma, optámos pelo método experimental, aplicando um desenho de medidas repetidas e desenvolvendo uma instalação interactiva com a qual realizamos três experiências diferentes, em que a mão de um sujeito é rastreada por uma câmara de profundidade Microsoft Kinect (captação de movimento) e um gesto díctico é usado para activar sons de música gravada e para identificar as suas localizações no plano de escuta horizontal. Assim, manipulamos a direcção do som e medimos a percentagem de localizações de fontes sonoras perceptuais correctas, resultante das respostas dos participantes num Inquérito Por Questionário em comparação com as direcções reais do gesto díctico e das fontes sonoras perceptuais fornecidas pelo software que utilizamos no nosso trabalho. Para população-alvo pensámos em pessoas com conhecimentos musicais e pessoas com poucos ou nenhuns conhecimentos musicais, o que nos levou a solicitar a um grande número de pessoas a sua participação voluntária, anónima e sem constrangimentos no nosso estudo. Isso foi levado a cabo sobretudo através do envio de correio electrónico para amigos, para estudantes de diferentes áreas a frequentar e para colegas a trabalhar na Escola de Artes da Universidade Católica Portuguesa (EA- -UCP), na Escola Superior de Música e Artes do Espetáculo do Instituto Politécnico do Porto e na Academia de Música de Espinho. Para além disso, foi também crucial falar-se com amigos e familiares e informar tantas pessoas quanto possíıvel sobre a nossa investigação, através da colocação de cartazes informativos nas paredes dos corredores da Universidade Católica, alguns dias antes de as experiências terem sido realizadas no Laboratório de Captação de Movimento da EA-UCP. Por fim, é efectuada uma análise estatística descritiva e inferencial dos dados recolhidos. Os principais resultados apontam no sentido de ser mais fácil definir a origem do som quando a sua incidência é frontal no plano de escuta horizontal, para além de a percepção auditiva ser mais precisa nessa direcção, tal como a teoria da localização de fontes sonoras prevê. Enquanto 86.1% de todos os participantes consideram que o seu gesto díctico coincide com a origem do som na experiência 1, em que o uso desse gesto numa determinada direcção faz despoletar um som proveniente dessa direcção, apenas 58.1% admitem o mesmo na experiência 3, em que o mesmo gesto é usado para identificar a localização de uma fonte sonora perceptual predeterminada pelo sistema num ângulo de 260º em torno de um sujeito. Esta última percentagem parece dever-se ao facto de a maior parte dos sons ser produzida a partir de direcções laterais na experiência 3, tendo a posição da cabeça voltada para a câmara como referência. Pelo menos 55.9% de todos os voluntários não percebem que o seu gesto não poderia ter coincidido com a origem do som na experiência 2, já que o som é produzido a partir da direcção envolvente oposta. Este facto parece demonstrar que, quando os sons são produzidos frontalmente ou de trás e uma pessoa tem a tarefa de controlar os seus movimentos com um gesto díctico ao mesmo tempo, a sua capacidade para identificar a origem do som é, em geral, ainda mais baixa, para além da já conhecida capacidade reduzida para identificá-la quando o som se encontra no plano mediano, se a cabeça não for rodada. A maior parte dos participantes sente um controlo imediato sobre o som nas experiências 1 e 2, mas os tempos estimados pelos próprios são bastante superiores aos aproximadamente 650 milissegundos necessários para o ser humano ouvir e reagir a um som na nossa instalação interactiva. Descobrimos também que o tempo médio necessário para localizar sons com o uso de um gesto díctico na nossa experiência 3 é de cerca de 10 segundos, o que corresponde a um tempo bastante mais longo do que os 3 segundos que supusemos. Para além disso, os voluntários fazem em média 2 tentativas para localizar sons com os seus gestos dícticos, tendo a necessidade de ouvir apenas uma vez em média cada som na íntegra para o localizar. Os desvios à esquerda e à direita efectuados pela maior parte dos participantes relativamente às direcções verdadeiras do som, quando estes tentam identificar as localizações predeterminadas pelo sistema das fontes sonoras perceptuais com os seus gestos dícticos na zona periférica do corpo, são em média de 7.97º e -7.19º, respectivamente. Desta forma, o desvio médio absoluto é de 7.76º. Comparando esses desvios com aqueles levados a cabo pelos participantes usando a mão esquerda (desvios de 6.86o para a esquerda e -6.35º para a direita das direcções verdadeiras do som) e com aqueles usando a mão direita (desvios de 8.46º para a esquerda e -7.38º para a direita das direcções verdadeiras do som), concluímos que os resultados são bastante parecidos entre si. Descobrimos que a maior parte dos voluntários estima um tempo muito mais longo do que os 2 segundos que supusemos experimentalmente para entender cada uma das três experiências. Para além disso, esse tempo estimado pelos participantes diminui da primeira para a última experiência, aparentemente devido à familiarização, conscientemente provocada por nós através da mesma sequência de realização das experiências imposta a cada participante, com o nosso sistema interactivo, embora considerem ter entendido cada uma das três experiências rapidamente. Acresce que a maioria dos voluntários interage facilmente com a nossa instalação e concorda que o gesto sugerido por nós foi adequadamente seleccionado para qualquer uma das três experiências. Também constatamos que os participantes consideram a resposta do sistema ao gesto como sendo imediata nas nossas três experiências, ou seja, estimam cerca de 1 segundo, o que é consistente com o resultado da medição da latência do sistema de cerca de 470 milissegundos. Além disso, verificamos que a maioria dos voluntários se sente envolvida pelo som na nossa instalação interactiva usando Ambisonics Equivalent Panning. Portanto, concluímos que, usando uma instalação interactiva como a nossa com um público-alvo semelhante aquele que tivemos, há uma correlação relativamente elevada entre o gesto e a localização de fontes sonoras no espaço, mas que esta não é tão perfeita como poderia ser devido às limitações do nosso sistema auditivo e aparentemente à dependência natural do movimento da cabeça do gesto. Assim, parece que a espacialização sonora pode melhorar o desempenho numa instalação interactiva, mas de forma moderada. Mesmo assim, defendemos que um sistema como o nosso pode vir a ser aplicado com vantagem em domínios diversos como os que apresentamos como exemplos
    corecore