6,912 research outputs found

    Boosted Random ferns for object detection

    Get PDF
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In this paper we introduce the Boosted Random Ferns (BRFs) to rapidly build discriminative classifiers for learning and detecting object categories. At the core of our approach we use standard random ferns, but we introduce four main innovations that let us bring ferns from an instance to a category level, and still retain efficiency. First, we define binary features on the histogram of oriented gradients-domain (as opposed to intensity-), allowing for a better representation of intra-class variability. Second, both the positions where ferns are evaluated within the sliding window, and the location of the binary features for each fern are not chosen completely at random, but instead we use a boosting strategy to pick the most discriminative combination of them. This is further enhanced by our third contribution, that is to adapt the boosting strategy to enable sharing of binary features among different ferns, yielding high recognition rates at a low computational cost. And finally, we show that training can be performed online, for sequentially arriving images. Overall, the resulting classifier can be very efficiently trained, densely evaluated for all image locations in about 0.1 seconds, and provides detection rates similar to competing approaches that require expensive and significantly slower processing times. We demonstrate the effectiveness of our approach by thorough experimentation in publicly available datasets in which we compare against state-of-the-art, and for tasks of both 2D detection and 3D multi-view estimation.Peer ReviewedPostprint (author's final draft

    Exploring Human Vision Driven Features for Pedestrian Detection

    Full text link
    Motivated by the center-surround mechanism in the human visual attention system, we propose to use average contrast maps for the challenge of pedestrian detection in street scenes due to the observation that pedestrians indeed exhibit discriminative contrast texture. Our main contributions are first to design a local, statistical multi-channel descriptorin order to incorporate both color and gradient information. Second, we introduce a multi-direction and multi-scale contrast scheme based on grid-cells in order to integrate expressive local variations. Contributing to the issue of selecting most discriminative features for assessing and classification, we perform extensive comparisons w.r.t. statistical descriptors, contrast measurements, and scale structures. This way, we obtain reasonable results under various configurations. Empirical findings from applying our optimized detector on the INRIA and Caltech pedestrian datasets show that our features yield state-of-the-art performance in pedestrian detection.Comment: Accepted for publication in IEEE Transactions on Circuits and Systems for Video Technology (TCSVT

    Histogram of Oriented Principal Components for Cross-View Action Recognition

    Full text link
    Existing techniques for 3D action recognition are sensitive to viewpoint variations because they extract features from depth images which are viewpoint dependent. In contrast, we directly process pointclouds for cross-view action recognition from unknown and unseen views. We propose the Histogram of Oriented Principal Components (HOPC) descriptor that is robust to noise, viewpoint, scale and action speed variations. At a 3D point, HOPC is computed by projecting the three scaled eigenvectors of the pointcloud within its local spatio-temporal support volume onto the vertices of a regular dodecahedron. HOPC is also used for the detection of Spatio-Temporal Keypoints (STK) in 3D pointcloud sequences so that view-invariant STK descriptors (or Local HOPC descriptors) at these key locations only are used for action recognition. We also propose a global descriptor computed from the normalized spatio-temporal distribution of STKs in 4-D, which we refer to as STK-D. We have evaluated the performance of our proposed descriptors against nine existing techniques on two cross-view and three single-view human action recognition datasets. The Experimental results show that our techniques provide significant improvement over state-of-the-art methods

    Fast and Accurate Algorithm for Eye Localization for Gaze Tracking in Low Resolution Images

    Full text link
    Iris centre localization in low-resolution visible images is a challenging problem in computer vision community due to noise, shadows, occlusions, pose variations, eye blinks, etc. This paper proposes an efficient method for determining iris centre in low-resolution images in the visible spectrum. Even low-cost consumer-grade webcams can be used for gaze tracking without any additional hardware. A two-stage algorithm is proposed for iris centre localization. The proposed method uses geometrical characteristics of the eye. In the first stage, a fast convolution based approach is used for obtaining the coarse location of iris centre (IC). The IC location is further refined in the second stage using boundary tracing and ellipse fitting. The algorithm has been evaluated in public databases like BioID, Gi4E and is found to outperform the state of the art methods.Comment: 12 pages, 10 figures, IET Computer Vision, 201
    • …
    corecore