1,556 research outputs found

    A hyper-redundant manipulator

    Get PDF
    “Hyper-redundant” manipulators have a very large number of actuatable degrees of freedom. The benefits of hyper-redundant robots include the ability to avoid obstacles, increased robustness with respect to mechanical failure, and the ability to perform new forms of robot locomotion and grasping. The authors examine hyper-redundant manipulator design criteria and the physical implementation of one particular design: a variable geometry truss

    Safety-related Tasks within the Set-Based Task-Priority Inverse Kinematics Framework

    Full text link
    In this paper we present a framework that allows the motion control of a robotic arm automatically handling different kinds of safety-related tasks. The developed controller is based on a Task-Priority Inverse Kinematics algorithm that allows the manipulator's motion while respecting constraints defined either in the joint or in the operational space in the form of equality-based or set-based tasks. This gives the possibility to define, among the others, tasks as joint-limits, obstacle avoidance or limiting the workspace in the operational space. Additionally, an algorithm for the real-time computation of the minimum distance between the manipulator and other objects in the environment using depth measurements has been implemented, effectively allowing obstacle avoidance tasks. Experiments with a Jaco2^2 manipulator, operating in an environment where an RGB-D sensor is used for the obstacles detection, show the effectiveness of the developed system

    Cartesian control of redundant robots

    Get PDF
    A Cartesian-space position/force controller is presented for redundant robots. The proposed control structure partitions the control problem into a nonredundant position/force trajectory tracking problem and a redundant mapping problem between Cartesian control input F is a set member of the set R(sup m) and robot actuator torque T is a set member of the set R(sup n) (for redundant robots, m is less than n). The underdetermined nature of the F yields T map is exploited so that the robot redundancy is utilized to improve the dynamic response of the robot. This dynamically optimal F yields T map is implemented locally (in time) so that it is computationally efficient for on-line control; however, it is shown that the map possesses globally optimal characteristics. Additionally, it is demonstrated that the dynamically optimal F yields T map can be modified so that the robot redundancy is used to simultaneously improve the dynamic response and realize any specified kinematic performance objective (e.g., manipulability maximization or obstacle avoidance). Computer simulation results are given for a four degree of freedom planar redundant robot under Cartesian control, and demonstrate that position/force trajectory tracking and effective redundancy utilization can be achieved simultaneously with the proposed controller

    Fast Manipulability Maximization Using Continuous-Time Trajectory Optimization

    Full text link
    A significant challenge in manipulation motion planning is to ensure agility in the face of unpredictable changes during task execution. This requires the identification and possible modification of suitable joint-space trajectories, since the joint velocities required to achieve a specific endeffector motion vary with manipulator configuration. For a given manipulator configuration, the joint space-to-task space velocity mapping is characterized by a quantity known as the manipulability index. In contrast to previous control-based approaches, we examine the maximization of manipulability during planning as a way of achieving adaptable and safe joint space-to-task space motion mappings in various scenarios. By representing the manipulator trajectory as a continuous-time Gaussian process (GP), we are able to leverage recent advances in trajectory optimization to maximize the manipulability index during trajectory generation. Moreover, the sparsity of our chosen representation reduces the typically large computational cost associated with maximizing manipulability when additional constraints exist. Results from simulation studies and experiments with a real manipulator demonstrate increases in manipulability, while maintaining smooth trajectories with more dexterous (and therefore more agile) arm configurations.Comment: In Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS'19), Macau, China, Nov. 4-8, 201

    Configuration control of seven-degree-of-freedom arms

    Get PDF
    A seven degree of freedom robot arm with a six degree of freedom end effector is controlled by a processor employing a 6 by 7 Jacobian matrix for defining location and orientation of the end effector in terms of the rotation angles of the joints, a 1 (or more) by 7 Jacobian matrix for defining 1 (or more) user specified kinematic functions constraining location or movement of selected portions of the arm in terms of the joint angles, the processor combining the two Jacobian matrices to produce an augmented 7 (or more) by 7 Jacobian matrix, the processor effecting control by computing in accordance with forward kinematics from the augmented 7 by 7 Jacobian matrix and from the seven joint angles of the arm a set of seven desired joint angles for transmittal to the joint servo loops of the arm. One of the kinematic functions constraints the orientation of the elbow plane of the arm. Another one of the kinematic functions minimizes a sum of gravitational torques on the joints. Still another kinematic function constrains the location of the arm to perform collision avoidance. Generically, one kinematic function minimizes a sum of selected mechanical parameters of at least some of the joints associated with weighting coefficients which may be changed during arm movement. The mechanical parameters may be velocity errors or gravity torques associated with individual joints

    Avoiding space robot collisions utilizing the NASA/GSFC tri-mode skin sensor

    Get PDF
    Sensor based robot motion planning research has primarily focused on mobile robots. Consider, however, the case of a robot manipulator expected to operate autonomously in a dynamic environment where unexpected collisions can occur with many parts of the robot. Only a sensor based system capable of generating collision free paths would be acceptable in such situations. Recently, work in this area has been reported in which a deterministic solution for 2DOF systems has been generated. The arm was sensitized with 'skin' of infra-red sensors. We have proposed a heuristic (potential field based) methodology for redundant robots with large DOF's. The key concepts are solving the path planning problem by cooperating global and local planning modules, the use of complete information from the sensors and partial (but appropriate) information from a world model, representation of objects with hyper-ellipsoids in the world model, and the use of variational planning. We intend to sensitize the robot arm with a 'skin' of capacitive proximity sensors. These sensors were developed at NASA, and are exceptionally suited for the space application. In the first part of the report, we discuss the development and modeling of the capacitive proximity sensor. In the second part we discuss the motion planning algorithm

    Design, Control and Motion Planning for a Novel Modular Extendable Robotic Manipulator

    Get PDF
    This dissertation discusses an implementation of a design, control and motion planning for a novel extendable modular redundant robotic manipulator in space constraints, which robots may encounter for completing required tasks in small and constrained environment. The design intent is to facilitate the movement of the proposed robotic manipulator in constrained environments, such as rubble piles. The proposed robotic manipulator with multi Degree of Freedom (m-DOF) links is capable of elongating by 25% of its nominal length. In this context, a design optimization problem with multiple objectives is also considered. In order to identify the benefits of the proposed design strategy, the reachable workspace of the proposed manipulator is compared with that of the Jet Propulsion Laboratory (JPL) serpentine robot. The simulation results show that the proposed manipulator has a relatively efficient reachable workspace, needed in constrained environments. The singularity and manipulability of the designed manipulator are investigated. In this study, we investigate the number of links that produces the optimal design architecture of the proposed robotic manipulator. The total number of links decided by a design optimization can be useful distinction in practice. Also, we have considered a novel robust bio-inspired Sliding Mode Control (SMC) to achieve favorable tracking performance for a class of robotic manipulators with uncertainties. To eliminate the chattering problem of the conventional sliding mode control, we apply the Brain Emotional Learning Based Intelligent Control (BELBIC) to adaptively adjust the control input law in sliding mode control. The on-line computed parameters achieve favorable system robustness in process of parameter uncertainties and external disturbances. The simulation results demonstrate that our control strategy is effective in tracking high speed trajectories with less chattering, as compared to the conventional sliding mode control. The learning process of BLS is shown to enhance the performance of a new robust controller. Lastly, we consider the potential field methodology to generate a desired trajectory in small and constrained environments. Also, Obstacle Collision Avoidance (OCA) is applied to obtain an inverse kinematic solution of a redundant robotic manipulator
    • …
    corecore