1,460 research outputs found

    Real-time performance-focused on localisation techniques for autonomous vehicle: a review

    Get PDF

    Vehicular Instrumentation and Data Processing for the Study of Driver Intent

    Get PDF
    The primary goal of this thesis is to provide processed experimental data needed to determine whether driver intentionality and driving-related actions can be predicted from quantitative and qualitative analysis of driver behaviour. Towards this end, an instrumented experimental vehicle capable of recording several synchronized streams of data from the surroundings of the vehicle, the driver gaze with head pose and the vehicle state in a naturalistic driving environment was designed and developed. Several driving data sequences in both urban and rural environments were recorded with the instrumented vehicle. These sequences were automatically annotated for relevant artifacts such as lanes, vehicles and safely driveable areas within road lanes. A framework and associated algorithms required for cross-calibrating the gaze tracking system with the world coordinate system mounted on the outdoor stereo system was also designed and implemented, allowing the mapping of the driver gaze with the surrounding environment. This instrumentation is currently being used for the study of driver intent, geared towards the development of driver maneuver prediction models

    Towards an autonomous landing system in presence of uncertain obstacles in indoor environments

    Get PDF
    The landing task is fundamental to Micro air vehicles (MAVs) when attempting to land in an unpredictable environment (e.g., presence of static obstacles or moving obstacles). The MAV should immediately detect the environment through its sensors and decide its actions for landing. This paper addresses the problem of the autonomous landing approach of a commercial AR. Drone 2.0 in presence of uncertain obstacles in an indoor environment. A localization methodology to estimate the drone's pose based on the sensor fusion techniques which fuses IMU and Poxyz signals is proposed. In addition, a vision-based approach to detect and estimate the velocity, position of the moving obstacle in the drone's working environment is presented. To control the drone landing accurately, a cascade control based on an Accelerated Particle Swarm Optimization algorithm (APSO) is designed. The simulation and experimental results demonstrate that the obtained model is appropriate for the measured data

    Developing Predictive Models of Driver Behaviour for the Design of Advanced Driving Assistance Systems

    Get PDF
    World-wide injuries in vehicle accidents have been on the rise in recent years, mainly due to driver error. The main objective of this research is to develop a predictive system for driving maneuvers by analyzing the cognitive behavior (cephalo-ocular) and the driving behavior of the driver (how the vehicle is being driven). Advanced Driving Assistance Systems (ADAS) include different driving functions, such as vehicle parking, lane departure warning, blind spot detection, and so on. While much research has been performed on developing automated co-driver systems, little attention has been paid to the fact that the driver plays an important role in driving events. Therefore, it is crucial to monitor events and factors that directly concern the driver. As a goal, we perform a quantitative and qualitative analysis of driver behavior to find its relationship with driver intentionality and driving-related actions. We have designed and developed an instrumented vehicle (RoadLAB) that is able to record several synchronized streams of data, including the surrounding environment of the driver, vehicle functions and driver cephalo-ocular behavior, such as gaze/head information. We subsequently analyze and study the behavior of several drivers to find out if there is a meaningful relation between driver behavior and the next driving maneuver

    Perception architecture exploration for automotive cyber-physical systems

    Get PDF
    2022 Spring.Includes bibliographical references.In emerging autonomous and semi-autonomous vehicles, accurate environmental perception by automotive cyber physical platforms are critical for achieving safety and driving performance goals. An efficient perception solution capable of high fidelity environment modeling can improve Advanced Driver Assistance System (ADAS) performance and reduce the number of lives lost to traffic accidents as a result of human driving errors. Enabling robust perception for vehicles with ADAS requires solving multiple complex problems related to the selection and placement of sensors, object detection, and sensor fusion. Current methods address these problems in isolation, which leads to inefficient solutions. For instance, there is an inherent accuracy versus latency trade-off between one stage and two stage object detectors which makes selecting an enhanced object detector from a diverse range of choices difficult. Further, even if a perception architecture was equipped with an ideal object detector performing high accuracy and low latency inference, the relative position and orientation of selected sensors (e.g., cameras, radars, lidars) determine whether static or dynamic targets are inside the field of view of each sensor or in the combined field of view of the sensor configuration. If the combined field of view is too small or contains redundant overlap between individual sensors, important events and obstacles can go undetected. Conversely, if the combined field of view is too large, the number of false positive detections will be high in real time and appropriate sensor fusion algorithms are required for filtering. Sensor fusion algorithms also enable tracking of non-ego vehicles in situations where traffic is highly dynamic or there are many obstacles on the road. Position and velocity estimation using sensor fusion algorithms have a lower margin for error when trajectories of other vehicles in traffic are in the vicinity of the ego vehicle, as incorrect measurement can cause accidents. Due to the various complex inter-dependencies between design decisions, constraints and optimization goals a framework capable of synthesizing perception solutions for automotive cyber physical platforms is not trivial. We present a novel perception architecture exploration framework for automotive cyber- physical platforms capable of global co-optimization of deep learning and sensing infrastructure. The framework is capable of exploring the synthesis of heterogeneous sensor configurations towards achieving vehicle autonomy goals. As our first contribution, we propose a novel optimization framework called VESPA that explores the design space of sensor placement locations and orientations to find the optimal sensor configuration for a vehicle. We demonstrate how our framework can obtain optimal sensor configurations for heterogeneous sensors deployed across two contemporary real vehicles. We then utilize VESPA to create a comprehensive perception architecture synthesis framework called PASTA. This framework enables robust perception for vehicles with ADAS requiring solutions to multiple complex problems related not only to the selection and placement of sensors but also object detection, and sensor fusion as well. Experimental results with the Audi-TT and BMW Minicooper vehicles show how PASTA can intelligently traverse the perception design space to find robust, vehicle-specific solutions

    Variable Speed Limit Control at SAG Curves Through Connected Vehicles: Implications of Alternative Communications and Sensing Technologies

    Get PDF
    Connected vehicles (CVs) will enable new applications to improve traffic flow. This study’s focus is to investigate how potential implementation of variable speed limit (VSL) through different types of communication and sensing technologies on CVs may improve traffic flow at a sag curve. At sag curves, the gradient changes from negative to positive values which causes a reduction in the roadway capacity and congestion. A VSL algorithm is developed and implemented in a simulation environment for controlling the inflow of vehicles to a sag curve on a freeway to minimize delays and increase throughput. Both vehicle-to-vehicle (V2V) and infrastructure-to-vehicle (I2V) options for CVs are investigated while implementing the VSL control strategy in a simulation environment. Through a feedback control algorithm, the speed of CVs are manipulated in the upstream of the sag curve to avoid the formation of bottlenecks caused by the change in longitudinal driver behavior. A modified version of the intelligent driver model (IDM) is used to simulate driving behavior on the sag curve. Depending on the traffic density at a sag curve, the feedback control algorithm adjusts the approach speeds of CVs so that the throughput of the sag curve is maximized. A meta-heuristic algorithm is employed to determine the critical control parameters. Various market penetration rates for CVs are considered in the simulations for three alternative communications and sensing technologies. It is demonstrated that for higher Market Penetration Rates (MPR) the performance is the same for all three scenarios which means there is no need for infrastructure-based sensing when the MPR is high enough. The results demonstrate that not only the MPR of CVs but also how CVs are distributed in the traffic stream is critical for system performance. While MPR could be high, uneven distribution of CVs and lack of CVs at the critical time periods as congestion is building up may cause a deterioration in system performance

    Reports on industrial information technology. Vol. 12

    Get PDF
    The 12th volume of Reports on Industrial Information Technology presents some selected results of research achieved at the Institute of Industrial Information Technology during the last two years.These results have contributed to many cooperative projects with partners from academia and industry and cover current research interests including signal and image processing, pattern recognition, distributed systems, powerline communications, automotive applications, and robotics
    corecore