1,980 research outputs found

    A Box Regularized Particle Filter for state estimation with severely ambiguous and non-linear measurements

    Get PDF
    International audienceThe first stage in any control system is to be able to accurately estimate the system's state. However, some types of measurements are ambiguous (non-injective) in terms of state. Existing algorithms for such problems, such as Monte Carlo methods, are computationally expensive or not robust to such ambiguity. We propose the Box Regularized Particle Filter (BRPF) to resolve these problems. Based on previous works on box particle filters, we present a more generic and accurate formulation of the algorithm, with two innovations: a generalized box resampling step and a kernel smoothing method, which is shown to be optimal in terms of Mean Integrated Square Error. Monte Carlo simulations demonstrate the efficiency of BRPF on a severely ambiguous and non-linear estimation problem, that of Terrain Aided Navigation. BRPF is compared to the Sequential Importance Resampling Particle Filter (SIR-PF), Monte Carlo Markov Chain (MCMC), and the original Box Particle Filter (BPF). The algorithm outperforms existing methods in terms of Root Mean Square Error (e.g., improvement up to 42% in geographical position estimation with respect to the BPF) for a large initial uncertainty. The BRPF reduces the computational load by 73% and 90% for SIR-PF and MCMC, respectively, with similar RMSE values. This work offers an accurate (in terms of RMSE) and robust (in terms of divergence rate) way to tackle state estimation from ambiguous measurements while requiring a significantly lower computational load than classic Monte Carlo and particle filtering methods.The first stage in any control system is to be able to accurately estimate the system’s state. However, some types of measurements are ambiguous (non-injective) in terms of state. Existing algorithms for such problems, such as Monte Carlo methods, are computationally expensive or not robust to such ambiguity. We propose the Box Regularized Particle Filter (BRPF) to resolve these problems.Based on previous works on box particle filters, we present a more generic and accurate formulation of the algorithm, with two innovations: a generalized box resampling step and a kernel smoothing method, which is shown to be optimal in terms of Mean Integrated Square Error.Monte Carlo simulations demonstrate the efficiency of BRPF on a severely ambiguous and non-linear estimation problem, the Terrain Aided Navigation. BRPF is compared to the Sequential Importance Resampling Particle Filter (SIR-PF), the Markov Chain Monte Carlo approach (MCMC), and the original Box Particle Filter (BPF). The algorithm is demonstrated to outperform existing methods in terms of Root Mean Square Error (e.g., improvement up to 42% in geographical position estimation with respect to the BPF) for a large initial uncertainty.The BRPF yields a computational load reduction of 73% with respect to the SIR-PF and of 90% with respect to MCMC for similar RMSE orders of magnitude. The present work offers an accurate (in terms of RMSE) and robust (in terms of divergence rate) way to tackle state estimation from ambiguous measurements while requiring a significantly lower computational load than classic Monte Carlo and particle filtering methods

    A particle filtering approach for joint detection/estimation of multipath effects on GPS measurements

    Get PDF
    Multipath propagation causes major impairments to Global Positioning System (GPS) based navigation. Multipath results in biased GPS measurements, hence inaccurate position estimates. In this work, multipath effects are considered as abrupt changes affecting the navigation system. A multiple model formulation is proposed whereby the changes are represented by a discrete valued process. The detection of the errors induced by multipath is handled by a Rao-Blackwellized particle filter (RBPF). The RBPF estimates the indicator process jointly with the navigation states and multipath biases. The interest of this approach is its ability to integrate a priori constraints about the propagation environment. The detection is improved by using information from near future GPS measurements at the particle filter (PF) sampling step. A computationally modest delayed sampling is developed, which is based on a minimal duration assumption for multipath effects. Finally, the standard PF resampling stage is modified to include an hypothesis test based decision step

    Ensemble Kalman methods for high-dimensional hierarchical dynamic space-time models

    Full text link
    We propose a new class of filtering and smoothing methods for inference in high-dimensional, nonlinear, non-Gaussian, spatio-temporal state-space models. The main idea is to combine the ensemble Kalman filter and smoother, developed in the geophysics literature, with state-space algorithms from the statistics literature. Our algorithms address a variety of estimation scenarios, including on-line and off-line state and parameter estimation. We take a Bayesian perspective, for which the goal is to generate samples from the joint posterior distribution of states and parameters. The key benefit of our approach is the use of ensemble Kalman methods for dimension reduction, which allows inference for high-dimensional state vectors. We compare our methods to existing ones, including ensemble Kalman filters, particle filters, and particle MCMC. Using a real data example of cloud motion and data simulated under a number of nonlinear and non-Gaussian scenarios, we show that our approaches outperform these existing methods

    On particle filters applied to electricity load forecasting

    Get PDF
    We are interested in the online prediction of the electricity load, within the Bayesian framework of dynamic models. We offer a review of sequential Monte Carlo methods, and provide the calculations needed for the derivation of so-called particles filters. We also discuss the practical issues arising from their use, and some of the variants proposed in the literature to deal with them, giving detailed algorithms whenever possible for an easy implementation. We propose an additional step to help make basic particle filters more robust with regard to outlying observations. Finally we use such a particle filter to estimate a state-space model that includes exogenous variables in order to forecast the electricity load for the customers of the French electricity company \'Electricit\'e de France and discuss the various results obtained
    corecore