83 research outputs found

    Sparsity-based algorithms for inverse problems

    Get PDF
    Inverse problems are problems where we want to estimate the values of certain parameters of a system given observations of the system. Such problems occur in several areas of science and engineering. Inverse problems are often ill-posed, which means that the observations of the system do not uniquely define the parameters we seek to estimate, or that the solution is highly sensitive to small changes in the observation. In order to solve such problems, therefore, we need to make use of additional knowledge about the system at hand. One such prior information is given by the notion of sparsity. Sparsity refers to the knowledge that the solution to the inverse problem can be expressed as a combination of a few terms. The sparsity of a solution can be controlled explicitly or implicitly. An explicit way to induce sparsity is to minimize the number of non-zero terms in the solution. Implicit use of sparsity can be made, for e.g., by making adjustments to the algorithm used to arrive at the solution.In this thesis we studied various inverse problems that arise in different application areas, such as tomographic imaging and equation learning for biology, and showed how ideas of sparsity can be used in each case to design effective algorithms to solve such problems.Financial support was provided by the European Union's Horizon 2020 Research and Innovation programme under the Marie Sklodowska-Curie grant agreement no.~765604Number theory, Algebra and Geometr

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described

    Magnetic Hybrid-Materials

    Get PDF
    Externally tunable properties allow for new applications of suspensions of micro- and nanoparticles in sensors and actuators in technical and medical applications. By means of easy to generate and control magnetic fields, fluids inside of matrices are studied. This monnograph delivers the latest insigths into multi-scale modelling, manufacturing and application of those magnetic hybrid materials

    Plasmonic nanoantenna based coupler for telecom range

    Get PDF
    corecore