296 research outputs found

    Abnormal Infant Movements Classification With Deep Learning on Pose-Based Features

    Get PDF
    The pursuit of early diagnosis of cerebral palsy has been an active research area with some very promising results using tools such as the General Movements Assessment (GMA). In our previous work, we explored the feasibility of extracting pose-based features from video sequences to automatically classify infant body movement into two categories, normal and abnormal. The classification was based upon the GMA, which was carried out on the video data by an independent expert reviewer. In this paper we extend our previous work by extracting the normalised pose-based feature sets, Histograms of Joint Orientation 2D (HOJO2D) and Histograms of Joint Displacement 2D (HOJD2D), for use in new deep learning architectures. We explore the viability of using these pose-based feature sets for automated classification within a deep learning framework by carrying out extensive experiments on five new deep learning architectures. Experimental results show that the proposed fully connected neural network FCNet performed robustly across different feature sets. Furthermore, the proposed convolutional neural network architectures demonstrated excellent performance in handling features in higher dimensionality. We make the code, extracted features and associated GMA labels publicly available

    Yoga Pose Classification Using Deep Learning

    Get PDF
    Human pose estimation is a deep-rooted problem in computer vision that has exposed many challenges in the past. Analyzing human activities is beneficial in many fields like video- surveillance, biometrics, assisted living, at-home health monitoring etc. With our fast-paced lives these days, people usually prefer exercising at home but feel the need of an instructor to evaluate their exercise form. As these resources are not always available, human pose recognition can be used to build a self-instruction exercise system that allows people to learn and practice exercises correctly by themselves. This project lays the foundation for building such a system by discussing various machine learning and deep learning approaches to accurately classify yoga poses on prerecorded videos and also in real-time. The project also discusses various pose estimation and keypoint detection methods in detail and explains different deep learning models used for pose classification

    Skeleton-based human action and gesture recognition for human-robot collaboration

    Get PDF
    openThe continuous development of robotic and sensing technologies has led in recent years to an increased interest in human-robot collaborative systems, in which humans and robots perform tasks in shared spaces and interact with close and direct contacts. In these scenarios, it is fundamental for the robot to be aware of the behaviour that a person in its proximity has, to ensure their safety and anticipate their actions in performing a shared and collaborative task. To this end, human activity recognition (HAR) techniques have been often applied in human-robot collaboration (HRC) settings. The works in this field usually focus on case-specific applications. Instead, in this thesis we propose a general framework for human action and gesture recognition in a HRC scenario. In particular, a transfer learning enabled skeleton-based approach that employs as backbone the Shift-GCN architecture is used to classify general actions related to HRC scenarios. Pose-based body and hands features are exploited to recognise actions in a way that is independent from the environment in which these are performed and from the tools and objects involved in their execution. The fusion of small network modules, each dedicated to the recognition of either the body or hands movements, is then explored. This allows to better understand the importance of different body parts in the recognition of the actions as well as to improve the classification outcomes. For our experiments, we used the large-scale NTU RGB+D dataset to pre-train the networks. Moreover, a new HAR dataset, named IAS-Lab Collaborative HAR dataset, was collected, containing general actions and gestures related to HRC contexts. On this dataset, our approach reaches a 76.54% accuracy

    Computer vision intelligent approaches to extract human pose and Its activity from image sequences

    Get PDF
    The purpose of this work is to develop computational intelligence models based on neural networks (NN), fuzzy models (FM), support vector machines (SVM) and long short-term memory networks (LSTM) to predict human pose and activity from image sequences, based on computer vision approaches to gather the required features. To obtain the human pose semantics (output classes), based on a set of 3D points that describe the human body model (the input variables of the predictive model), prediction models were obtained from the acquired data, for example, video images. In the same way, to predict the semantics of the atomic activities that compose an activity, based again in the human body model extracted at each video frame, prediction models were learned using LSTM networks. In both cases the best learned models were implemented in an application to test the systems. The SVM model obtained 95.97% of correct classification of the six different human poses tackled in this work, during tests in different situations from the training phase. The implemented LSTM learned model achieved an overall accuracy of 88%, during tests in different situations from the training phase. These results demonstrate the validity of both approaches to predict human pose and activity from image sequences. Moreover, the system is capable of obtaining the atomic activities and quantifying the time interval in which each activity takes place.info:eu-repo/semantics/publishedVersio
    • 

    corecore