1,305 research outputs found

    ALOHA Random Access that Operates as a Rateless Code

    Get PDF
    Various applications of wireless Machine-to-Machine (M2M) communications have rekindled the research interest in random access protocols, suitable to support a large number of connected devices. Slotted ALOHA and its derivatives represent a simple solution for distributed random access in wireless networks. Recently, a framed version of slotted ALOHA gained renewed interest due to the incorporation of successive interference cancellation (SIC) in the scheme, which resulted in substantially higher throughputs. Based on similar principles and inspired by the rateless coding paradigm, a frameless approach for distributed random access in slotted ALOHA framework is described in this paper. The proposed approach shares an operational analogy with rateless coding, expressed both through the user access strategy and the adaptive length of the contention period, with the objective to end the contention when the instantaneous throughput is maximized. The paper presents the related analysis, providing heuristic criteria for terminating the contention period and showing that very high throughputs can be achieved, even for a low number for contending users. The demonstrated results potentially have more direct practical implications compared to the approaches for coded random access that lead to high throughputs only asymptotically.Comment: Revised version submitted to IEEE Transactions on Communication

    Prioritized Random MAC Optimization via Graph-based Analysis

    Get PDF
    Motivated by the analogy between successive interference cancellation and iterative belief-propagation on erasure channels, irregular repetition slotted ALOHA (IRSA) strategies have received a lot of attention in the design of medium access control protocols. The IRSA schemes have been mostly analyzed for theoretical scenarios for homogenous sources, where they are shown to substantially improve the system performance compared to classical slotted ALOHA protocols. In this work, we consider generic systems where sources in different importance classes compete for a common channel. We propose a new prioritized IRSA algorithm and derive the probability to correctly resolve collisions for data from each source class. We then make use of our theoretical analysis to formulate a new optimization problem for selecting the transmission strategies of heterogenous sources. We optimize both the replication probability per class and the source rate per class, in such a way that the overall system utility is maximized. We then propose a heuristic-based algorithm for the selection of the transmission strategy, which is built on intrinsic characteristics of the iterative decoding methods adopted for recovering from collisions. Experimental results validate the accuracy of the theoretical study and show the gain of well-chosen prioritized transmission strategies for transmission of data from heterogenous classes over shared wireless channels

    Analysis of d-ary Tree Algorithms with Successive Interference Cancellation

    Full text link
    In this article, we calculate the mean throughput, number of collisions, successes, and idle slots for random tree algorithms with successive interference cancellation. Except for the case of the throughput for the binary tree, all the results are new. We furthermore disprove the claim that only the binary tree maximises throughput. Our method works with many observables and can be used as a blueprint for further analysis.Comment: 30 pages, 2 figures, comments welcom

    Modern Random Access for Satellite Communications

    Full text link
    The present PhD dissertation focuses on modern random access (RA) techniques. In the first part an slot- and frame-asynchronous RA scheme adopting replicas, successive interference cancellation and combining techniques is presented and its performance analysed. The comparison of both slot-synchronous and asynchronous RA at higher layer, follows. Next, the optimization procedure, for slot-synchronous RA with irregular repetitions, is extended to the Rayleigh block fading channel. Finally, random access with multiple receivers is considered.Comment: PhD Thesis, 196 page

    Time diversity solutions to cope with lost packets

    Get PDF
    A dissertation submitted to Departamento de Engenharia Electrotécnica of Faculdade de Ciências e Tecnologia of Universidade Nova de Lisboa in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Engenharia Electrotécnica e de ComputadoresModern broadband wireless systems require high throughputs and can also have very high Quality-of-Service (QoS) requirements, namely small error rates and short delays. A high spectral efficiency is needed to meet these requirements. Lost packets, either due to errors or collisions, are usually discarded and need to be retransmitted, leading to performance degradation. An alternative to simple retransmission that can improve both power and spectral efficiency is to combine the signals associated to different transmission attempts. This thesis analyses two time diversity approaches to cope with lost packets that are relatively similar at physical layer but handle different packet loss causes. The first is a lowcomplexity Diversity-Combining (DC) Automatic Repeat reQuest (ARQ) scheme employed in a Time Division Multiple Access (TDMA) architecture, adapted for channels dedicated to a single user. The second is a Network-assisted Diversity Multiple Access (NDMA) scheme, which is a multi-packet detection approach able to separate multiple mobile terminals transmitting simultaneously in one slot using temporal diversity. This thesis combines these techniques with Single Carrier with Frequency Division Equalizer (SC-FDE) systems, which are widely recognized as the best candidates for the uplink of future broadband wireless systems. It proposes a new NDMA scheme capable of handling more Mobile Terminals (MTs) than the user separation capacity of the receiver. This thesis also proposes a set of analytical tools that can be used to analyse and optimize the use of these two systems. These tools are then employed to compare both approaches in terms of error rate, throughput and delay performances, and taking the implementation complexity into consideration. Finally, it is shown that both approaches represent viable solutions for future broadband wireless communications complementing each other.Fundação para a Ciência e Tecnologia - PhD grant(SFRH/BD/41515/2007); CTS multi-annual funding project PEst-OE/EEI/UI0066/2011, IT pluri-annual funding project PEst-OE/EEI/LA0008/2011, U-BOAT project PTDC/EEATEL/ 67066/2006, MPSat project PTDC/EEA-TEL/099074/2008 and OPPORTUNISTICCR project PTDC/EEA-TEL/115981/200
    • …
    corecore